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Abstract. We describe new structure on the Goodwillie derivatives of a functor, and we show
how the full Taylor tower of the functor can be recovered from this structure. This new structure
takes the form of a coalgebra over a certain comonad which we construct, and whose precise nature
depends on the source and target categories of the functor in question. The Taylor tower can be
recovered from standard cosimplicial cobar constructions on the coalgebra formed by the derivatives.
We get from this an equivalence between the homotopy category of polynomial functors and that
of bounded coalgebras over this comonad.

For functors with values in the category of spectra, we give a rather explicit description of the
associated comonads and their coalgebras. In particular, for functors from based spaces to spectra
we interpret this new structure as that of a divided power right module over the operad formed by
the derivatives of the identity on based spaces.

Goodwillie’s calculus of homotopy functors, developed in [11, 12, 13], provides a systematic filtration
of any functor (between sufficiently nice model categories) that preserves weak equivalences. If
F : C→ D is such a functor, then there is a ‘Taylor tower’

F → · · · → PnF → Pn−1F → · · · → P0F

where F → PnF is the universal natural transformation from F to an ‘n-excisive’ functor. For nice
F , and for sufficiently highly connected X ∈ C, the tower ‘converges’ in the sense that there is a
weak equivalence

F (X) −̃→ holim
n

PnF (X).

The terms PnF are in general difficult to understand, but Goodwillie gave in [13] simple descriptions
of the ‘homogeneous layers’ of the Taylor tower, that is the fibres

DnF := hofib(PnF → Pn−1F ).

For a functor F : Top∗ → Top∗ of based topological spaces, and a finite CW complex X, we have

DnF (X) ' Ω∞(∂nF ∧ (Σ∞X)∧n)hΣn

where ∂nF is a spectrum with action of the symmetric group Σn. We think of ∂nF as the ‘nth

Taylor coefficient’ of the functor F expanded around the one-point space ∗, or the ‘nth derivative’
of F at ∗. Since we only consider Taylor expansions at ∗ we refer to ∂nF just as the ‘nth derivative
of F ’.

We use the notation
∂∗F := (∂1F, ∂2F, . . . , ∂nF, . . .)

for the sequence of derivatives of F together with their symmetric group actions. Thus ∂∗F is
a symmetric sequence of spectra. Goodwillie’s theorem says that the symmetric sequence ∂∗F
determines the layers in the Taylor tower of F .

Our goal in the present paper is to describe additional structure on ∂∗F , which is sufficient to
recover the entire Taylor tower of F , rather than just the homogeneous layers. Part of the additional
structure was previously studied by the authors in [2], where it was shown that ∂∗F has the structure
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of a module over a certain operad ∂∗I (namely that formed by the derivatives of the identity on
Top∗). The precise type of module structure (left, right or bi-) depends on the source and target
categories of F .

It is clear however that this module structure does not tell the full story. For example, if F is a
functor from and to the category of spectra, then the methods of [2] do not endow ∂∗F with any
additional structure. It is easy to see, though, that the symmetric sequence ∂∗F alone does not
determine the Taylor tower of F , even in this case.

To obtain further structure we use a homotopic version of descent theory as in, for example,
[15]. By this we mean the following. Let C and D each stand for either the category Top∗ (of based
topological spaces) or Sp (of spectra). Let [C,D] be the category of pointed, finitary (i.e., preserving
filtered homotopy colimits) simplicial functors from C to D. Taking Goodwillie derivatives can be
thought of as a functor

∂∗ : [C,D] −→M
whereM is either a category of modules over ∂∗I, or the category of symmetric sequences, depend-
ing on C and D. The following is one of the key observations of this paper: the functor ∂∗ has a
right adjoint, which we denote as

Φ: M→ [C,D].

It follows in a standard way that the composite ∂∗Φ is a comonad onM and that for any F ∈ [C,D],
∂∗F is a ∂∗Φ-coalgebra. We can thus view ∂∗ as a functor

∂∗ : [C,D]→ ∂∗Φ-coalg.

The main result of this paper then says that the Taylor tower of F can be recovered from the
coalgebra ∂∗F via a cobar construction. More precisely we have the following.

Theorem 0.1. For F ∈ [C,D] as above, we have

PnF ' cobar(Φ, ∂∗Φ, ∂≤nF )

where ∂≤n denotes the truncated ∂∗Φ-coalgebra consisting only of the first n derivatives of F .

Moreover, if the Taylor tower of F converges then

F ' cobar(Φ, ∂∗Φ, ∂∗F ).

These results are proved in Theorem 3.13 and Corollary 3.16.

We say that a symmetric sequence is ‘N -truncated’ if all its terms above the N th are contractible.
We say that it is ‘bounded’ if it is N -truncated for some N . It turns out that every bounded
∂∗Φ-coalgebra arises, up to homotopy, as the derivatives of some functor. We therefore have the
following result which is proved in Theorem 3.19.

Theorem 0.2. For each integer N ≥ 1, there is an equivalence between the homotopy category of
pointed finitary N -excisive functors F : C → D and that of N -truncated ∂∗Φ-coalgebras. Letting
N →∞, there is an equivalence between the homotopy category of all polynomial functors and that
of all bounded ∂∗Φ-coalgebras.

Remarks. We do not know of a model structure on the category of ∂∗Φ-coalgebras and thus the
above result does not arise from a Quillen equivalence. Instead we develop directly a homotopy
theory for coalgebras over a comonad which may be of independent interest. (See Section 1.)

In reality, we need to replace the comonad ∂∗Φ with a homotopically correct version. To do this
we replace [C,D] with a Quillen equivalent model category in which every object is cofibrant. The



A CLASSIFICATION OF TAYLOR TOWERS 3

comonad we actually use is then ∂∗ucΦ where u and c form a Quillen equivalence between [C,D]
and this other category. This is explained in detail in Section 2. With this in mind, we drop u and
c from the notation and just write ∂∗Φ for the comonad in question.

Though we only prove our results for functors between the categories Top∗ and Sp, much of our
approach relies only on formal properties of the calculus of functors. In principle it should be
applicable to any functor for which there is an appropriate notion of Taylor tower and of derivatives.

To make Theorems 0.1 and 0.2 more useful, it is desirable to have an explicit description of the
comonad ∂∗Φ and of the category of coalgebras over this comonad. In this paper we partially
achieve this goal for functors with values in spectra. We now describe our results about this, so
most definitions and statements have two versions: one for functors Sp→ Sp and one for functors
Top∗ → Sp.

Let us use the notation X [n] to mean the following: If X is a spectrum then X [n] = X∧n. If X is a
space then X [n] = X∧n/∆nX where ∆nX ⊂ X∧n is the fat diagonal. For r ≤ n, there is a functor
Kr from the category of Σn-spectra to the category of Σr-spectra given by

(0.3) KrAn ' ∂r
[
X 7→ (An ∧X [n])hΣn

]
.

Here X may live either in Sp or Top∗ depending on the type of functors being considered.

It turns out that the constructions Kr encode all the information about the comonad ∂∗Φ, at least
if we restrict our attention to truncated symmetric sequences. More specifically, for r ≤ s ≤ n
there is a natural Σr-equivariant map

δr,s : KrAn → KrKsAn

and for each r, a Σr-equivariant map

εr : KrAr → Ar

that together reflect the comonad structure on ∂∗Φ. These maps are associative and unital in an
appropriate sense. We prove the following result (Lemma 4.8), which encodes the ∂∗Φ-coalgebra
structure on ∂∗F in terms of the individual maps δr,s and εr.

Theorem 0.4. Let C be either Top∗ or Sp. Let F : C −→ Sp be a functor. For each r ≤ n there is
a Σr-equivariant map

θr,n : ∂rF → Kr∂nF.

Moreover, for each r ≤ s ≤ n, the following diagram commutes

∂rF Kr∂sF

Kr∂nF KrKs∂nF

//
θr,s

��

θr,n

��

Krθs,n

//
δr,s

and for each r the following composite is the identity

∂rF
θr,r−→ Kr∂rF

εr−→ ∂rF.

The Taylor tower of F can then be recovered from the symmetric sequence ∂∗F and the maps θr,n.

Note that (0.3) describes the construction Kr only up to homotopy. The choice of model for Kr

and the maps δr,s matters, because for Theorem 0.4 one needs a model for which the maps δr,s
are strictly associative and unital. At the same time one would like to have a model that is as
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simple and explicit as possible. In this paper we do give a strictly associative model for the Kr

and δr,s, but it is not really explicit. On the other hand, we also give more explicit models for Kr

(in Proposition 5.2 for the [Sp, Sp] case and in Proposition 6.4 for the [Top∗,Sp] case), but these
models are only associative up to homotopy. We have another approach to these constructions,
based on modules over pro-operads, that we believe yields models that are both explicit and strictly
associative. (See Remark 5.9.) For reasons of space we leave these results to a subsequent paper.

For a functor F : Top∗ → Sp, the ∂∗Φ-coalgebra structure on ∂∗F takes a fairly simple form which
is worth noting here. The following is Proposition 6.4.

Theorem 0.5. The derivatives ∂∗F of a functor F : Top∗ → Sp form a right module over the
operad ∂∗I. They also are equipped with maps θr,n that make the following diagrams commute up
to homotopy: [∏

n�r

Map(∂n1I ∧ . . . ∧ ∂nrI, ∂nF )

]
hΣn

∂rF

[∏
n�r

Map(∂n1I ∧ . . . ∧ ∂nrI, ∂nF )

]hΣn

.

��

N

::

θr,n

//

ψr,n

Here the maps ψr,n are determined by the right ∂∗I-module structure on ∂∗F , and N is the usual
norm map from homotopy orbits to homotopy fixed points.

The structure on ∂∗F described in Theorem 0.5 can be called a divided power right ∂∗I-module (at
least up to homotopy), with the lifts θr,n forming the analogue of a divided power structure on a
commutative algebra.

Example 0.6. We demonstrate our theory here by classifying 2-excisive functors with values in
Sp. These cases are well-known, and can be figured out by hand quite easily, but serve to illustrate
the simplest cases of Theorems 0.4 and 0.5. Later in the paper we give a similar description of
3-excisive functors.

Let us consider the [Sp,Sp] case first. It is not difficult to show that in this case K1(A2) is
equivalent to the Tate construction TateΣ2(A2). It follows that the first two derivatives of a functor
F : Sp→ Sp are connected by a map

∂1F −→ TateΣ2(∂2F ).

Since at this level there are no compatibility conditions, this map completely determines the qua-
dratic part of F . To put it another way: homotopy classes of 2-excisive functors from Sp to Sp with
prescribed derivatives A1 and A2 are in bijective correspondence with homotopy classes of maps
A1 → TateΣ2(A2).

In the [Top∗,Sp] case, the right ∂∗I-module structure on ∂∗F amounts to a map

∂1F −→ Map(∂2I, ∂2F )hΣ2 .

Since ∂2I ' S−1, this is the same thing as a map

∂1F −→ (∂2F ∧ S1)hΣ2 .
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Theorem 0.5 then says that this map lifts, over the norm, to a map of the form

∂1F −→ (∂2F ∧ S1)hΣ2 .

Again there are no compatibility conditions so this map completely determines the quadratic part
of F . Thus homotopy classes of 2-excisive functors from Top∗ to Sp with prescribed derivatives A1

and A2 are in bijective correspondence with homotopy classes of maps A1 → (A2 ∧ S1)hΣ2 .

Remark 0.7. Our results for functors from Sp to Sp overlap with those of McCarthy [19]. Here
is one way to see the connection. It follows from McCarthy’s work on dual calculus that there are
homotopy pullback squares of the following form.

PnF (X) (∂nF ∧X∧n)hΣn

Pn−1F (X) TateΣn(∂nF ∧X∧n).

//

�� ��

//

For an explicit construction of this square see Kuhn ([17, 1.9]) or Chaoha ([5, Theorem 3.1]). These
squares give an inductive description of the data needed to reconstruct the Taylor tower. Our maps
θr,n in the Sp to Sp case can be derived from McCarthy’s pullback square: they are given by taking

the rth derivative of the bottom horizontal map. What is new here is the explicit description of the
compatibility conditions satisfied by these maps.

Conversely, it is possible to use our approach to derive McCarthy’ pullback square, and also extend
it to functors from Top∗ to Sp. This is done in Corollary 4.17.

Our general theory also applies to functors that take values in based spaces. In each such case
(either from spectra to spaces, or spaces to spaces) there is a comonad ∂∗Φ (on the category of
left ∂∗I-modules, or ∂∗I-bimodules, respectively) that acts on the derivatives of such a functor,
and such that the Taylor tower of the functor can be recovered from this action. In these cases,
however, it appears to be much harder to give a completely explicit description of what it means
to be a coalgebra over ∂∗Φ. We do offer, in Section 7, a classification of 2-excisive functors in each
of these settings.

Note that while we have far less to say about the space-valued case, we view the fact that our
general theory does apply to it as one of the most significant results of the paper. The complexity
we encounter in trying to calculate the comonad ∂∗Φ reflects structure on the derivatives of space-
valued functors that bears further study.

Outline of the paper. Our main result provides an equivalence between a homotopy category
of functors and that of coalgebras over a certain comonad. In section 1 we describe the homotopy
theory for such coalgebras that we have in mind, and we construct the relevant homotopy category.
Section 2 is concerned with our version of homotopic descent theory. Here we prove a homotopic
version of the Barr-Beck Comonadicity Theorem for a Quillen adjunction.

In section 3 we prove our main result classifying Taylor towers. Then in section 4 we focus on
spectrum-valued functors and derive some general results about them. In section 5 we give an
explicit (but only up to homotopy) description of the coalgebra structures for functors from Sp to
Sp, and in section 6 we do the same for functors from Top∗ to Sp. Finally, in section 7, we show
that our general theory also applies to functors with values in based spaces.
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1. Homotopy theory for coalgebras over comonads

In this section we consider a comonad K defined on some category B that is equipped with a
homotopy theory. Our goal is to describe a homotopy theory for the category of coalgebras over K.
In our case these homotopy theories are described in terms of an enrichment in topological spaces.

Our approach is to define, for each pair of coalgebras, A and A′, a suitable space of ‘derived’
coalgebra maps from A to A′. These mapping spaces have a composition that is associative up
to coherent homotopies and so determine a topologically-enriched A∞-category whose objects are
the K-coalgebras. There is an associated homotopy category (in which composition is strictly
associative) given by taking path components of the mapping spaces. We show that a derived
coalgebra map from A to A′ is invertible in this homotopy category if and only if its underlying
map A→ A′ is an isomorphism in the homotopy category associated to the topological category B.

Previous work has established such homotopy theories in a different way. Model structures on
particular categories of coalgebras have been studied by various authors starting with Quillen’s
work [24] on rational homotopy theory. Hess and Shipley [16] have given general conditions under
which coalgebras over a comonad on a model category inherit a model structure in which the
cofibrations and weak equivalences are detected in the underlying category.

In the quasi-categorical setting, Riehl and Verity [25] have described quasi-categories of algebras
over a (homotopy coherent) monad. Their results have dual versions for coalgebras over a comonad.
Lurie’s approach to monads [18, 4.7] also seems likely to dualize to the comonad case.

Notation 1.1. For this section, we let B be a category enriched in the category Top of compactly
generated weak Hausdorff spaces. For objects A,A′ in B, we write Hom(A,A′) for the space of maps
from A to A′. Throughout this section, any functor K : B → B is assumed to be topologically-
enriched, so that there are maps of spaces

Hom(A,A′)→ Hom(KA,KA′)

for any A,A′ ∈ B.

Definition 1.2. A comonad K on the category B consists of a (topologically-enriched) functor

K : B → B,

together with (enriched) natural transformations

δ : K → KK; ε : K → 1B
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such that the following diagrams commute

K KK

KK KKK

//δ

��

δ

��

Kδ

//δK

,

K KK

KK K

//δ

��

δ

��

Kε

//

εK

A K-coalgebra consists of an object A ∈ B together with a morphism

θ : A→ KA

such that the following diagrams commute in B

A KA

KA KKA

//θ

��

θ

��

Kθ

//
δA

,

A KA

A

//θ

��

εA

For K-coalgebras A and A′, a (strict) morphism of K-coalgebras from A to A′ is a morphism

f : A→ A′

in B such that the following diagram commutes

A A′

KA KA′

//
f

��

θA

��

θA′

//
Kf

We specify homotopical information for the category of K-coalgebras first by means of an enrich-
ment over the category cTop of cosimplicial spaces with respect to the ‘box product’. This is a
symmetric monoidal structure due to Batanin [4] and used to great effect by McClure and Smith
in their proof of the Deligne Conjecture [20].

Definition 1.3. Let A and A′ be K-coalgebras in B. We define a cosimplicial space Hom•K(A,A′)
by

Hom•K(A,A′) := Hom(A,K•A′)

with coface maps δi : Hom(A,KmA′)→ Hom(A,Km+1A′) given

• for i = 0, by the composite

Hom(A,KmA′)→ Hom(KA,Km+1A′)→ Hom(A,Km+1A′)

where the first map comes from the topological enrichment of K, and the second from the
K-coalgebra structure on A;
• for i = 1, . . . ,m, by applying the comultiplication map δ : K → KK to the ith copy of K

in KmA′;
• for i = m+ 1, by the K-coalgebra structure on A′.

and codegeneracy maps σj : Hom(A,KmA′)→ Hom(A,Km−1A′) given
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• for j = 0, . . . ,m− 1, by applying the counit ε : K → 1B to the j + 1th copy of K.

Definition 1.4. For two cosimplicial spaces X•, Y •, we define (X• � Y •) to be the cosimplicial
space given by

(X• � Y •)m := colim

 ∐
p+q=m−1

Xp × Y q ⇒
∐

p+q=m

Xp × Y q

 .

The two maps in this coequalizer are, respectively, (δp+1, 1) and (1, δ0). The coface maps on X•�Y •

are given by

δi =

{
(δi, 1) i = 0, . . . , p+ 1;

(1, δi−p−1) i = p+ 1, . . . ,m+ 1,

and the codegeneracy maps by

σj =

{
(σj , 1) j = 0, . . . , p− 1;

(1, σj−p) j = p, . . . ,m− 1.

Proposition 1.5 (Batanin, [4]). The construction � is a monoidal product on the category cTop
of cosimplicial spaces with unit given by the constant cosimplicial space ∗.

To see that the cosimplicial spaces in Definition 1.3 form part of a cTop-enriched category, we have
to describe the composition and identity morphisms.

Definition 1.6. Let A,A′, A′′ be K-coalgebras. We define a composition map

µ : Hom•K(A,A′) � Hom•K(A′, A′′)→ Hom•K(A,A′′)

via the composites

Hom(A,KpA′)×Hom(A′,KqA′′)→ Hom(A,KpA′)×Hom(KpA′,Kp+qA′′)→ Hom(A,Kp+qA′′).

where the first map uses the topological enrichment of K and the second is composition in the
topological category B.

We also define an identity map

ι : ∗ → Hom•K(A,A)

via the composites

ιm : ∗ → Hom(A,A)→ Hom(KmA,KmA)→ Hom(A,KmA)

where the first map picks out the identity morphism on A, the second comes from the topological
enrichment of K, and the last is given by iterating the K-coalgebra structure on A.

Proposition 1.7. The maps µ and ι of 1.6 determine a category enriched in (cTop,�, ∗) whose
objects are the K-coalgebras. We denote this category by BK .

Remark 1.8. The cTop-enriched category BK has an underlying topological category with the
same objects, and with the space of morphisms from A to A′ given by

HomK(A,A′) := HomcTop(∗,Hom•K(A,A′)).

The resulting topological category is the usual category of K-coalgebras. In particular, the points
in HomK(A,A′) are the strict K-coalgebra morphisms A→ A′ in the sense of Definition 1.2.
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There is another way to construct mapping spaces in a cTop-enriched category, which is by taking
totalizations of the cosimplicial spaces instead of their strict limits. As we see below this produces
a topological category for which composition is not strictly associative, but is associative up to
higher coherent homotopies. It is this approach that yields the homotopy theory we are interested
in.

It is convenient to use the ‘restricted’ (or ‘fat’) totalization throughout this paper since this has
the correct homotopy type without requiring a Reedy fibrant replacement.

Definition 1.9. The restricted totalization of a cosimplicial space X• is the space

Tot(X•) := Hom∆inj
(∆•, X•)

where ∆inj is the subcategory of the simplicial indexing category consisting only of the injective
morphisms. The restricted totalization is homotopy invariant, and is equivalent to the ordinary
totalization of a Reedy fibrant replacement.

Definition 1.10. Let A,A′ be K-coalgebras in B. The space of derived K-coalgebra maps from A
to A′ is the restricted totalization

H̃omK(A,A′) := Tot Hom•K(A,A′) = Hom∆inj
(∆•,Hom(A,K•A′)).

The points in this space are no longer strict K-coalgebra maps, but commute with the coalgebra
structures only up to higher coherent homotopies.

Definition 1.11. A derived K-coalgebra map from A to A′ is a point in the space H̃omK(A,A′).
Explicitly, such an f consists of a collection of morphisms

fn : ∆n → Hom(A,KnA′)

satisfying some compatibility conditions. In particular, there is a morphism

f0 : A→ A′

in the underlying category of the topological category B, and the map f1 : ∆1 → Hom(A,KA′)
provides a homotopy between the two composites in the square

A A′

KA KA′

//

�� ��

//

The maps fn can be viewed as a set of higher coherent homotopies that generalize this description
of f1.

There is no single well-defined and associative composition for derived K-coalgebra maps, but we
can compose them up to the action of the following A∞-operad.

Definition 1.12. We define a (non-symmetric) operad in Top by taking, for n ≥ 0,

An := Hom∆inj
(∆•, (∆•)�n).

This is the ‘coendomorphism operad’ of the cosimplicial space ∆• with respect to the box product.
McClure and Smith prove in [21, 3.5] that An is contractible for each n ≥ 0.

For n ≥ 0 and for K-coalgebras A0, . . . , An we define natural composition maps

(1.13) An × H̃omK(A0, A1)× · · · × H̃omK(An−1, An)→ H̃omK(A0, An)
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by the composites

Hom∆inj
(∆•,(∆•)�n)×Hom∆inj

(∆•,Hom•K(A0, A1))× · · · ×Hom∆inj
(∆•,Hom•K(An−1, An))

→ Hom∆inj
(∆•, (∆•)�n)×Hom∆inj

((∆•)�n,Hom•K(A0, A1) � . . .� Hom•K(An−1, An))

→ Hom∆inj
(∆•,Hom•K(A0, A1) � . . .� Hom•K(An−1, An))

→ Hom∆inj
(∆•,Hom•K(A0, An))

where the final map is given by iterating the map µ of Definition 1.6.

Proposition 1.14. The maps (1.13) determine a topological-A∞-category whose objects are the

K-coalgebras in B and whose morphism spaces are the spaces H̃omK(A,A′).

Proof. An A∞-category consists of generalized composition maps of the form (1.13) that satisfy
associativity and unit conditions with respect to the operad structure on the A∞ operad A. In our
case these conditions follow formally from the construction of the maps (1.13) and the fact that A
is the coendomorphism operad on the object ∆•. �

As for an ordinary topological category, we can associate a homotopy category to any topological
A∞-category by taking path components of the mapping objects.

Definition 1.15. The homotopy category of K-coalgebras has as its objects the K-coalgebras in

B, and the morphisms from A to A′ are the path components of the mapping space H̃omK(A,A′).
We denote the morphism sets in this homotopy category by

[A,A′]K := π0H̃omK(A,A′) = π0 Tot Hom(A,K•A′).

Composition and identities are given by applying π0 to the maps (1.13) with n = 2 and n = 0
respectively. The associativity and unit conditions follow from the associativity of the maps (1.13)
and the fact that An is contractible for all n.

We now identify those derived coalgebra maps that are invertible in this homotopy category. It turns
out to be precisely those whose underlying map is invertible in the homotopy category associated
to the topological category B.

Proposition 1.16. The derived K-coalgebra map f : A → A′ induces an isomorphism in the
homotopy category of K-coalgebras if and only if the underlying map f0 : A → A′ induces an
isomorphism in the homotopy category of the topological category B.

Proof. The map f induces an isomorphism in the homotopy category of K-coalgebras if and only
if, for any K-coalgebra A′′, composition with f induces a bijection

f∗ : [A′, A′′]K //
∼=

[A,A′′]K .

In order to analyze this condition, we fix a point in the space A2 by means of an isomorphism of
cosimplicial spaces

α : ∆• //
∼=

∆• � ∆•

as described in McClure-Smith [21, 3.5]. This choice then fixes a composition operation for derived
K-coalgebra maps.

The map f∗ can then be described in the following way. It is given by taking the path components
of a map of spaces of the form

Tot Hom(A′,K•A′′) //α∗
Tot(∆• � Hom(A′,K•A′′)) //

β∗

Tot Hom(A,K•A′′).
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The first map α∗ is determined by α and is the composite

Hom∆inj
(∆•, X•) //

∆•�−
Hom∆inj

(∆• � ∆•,∆• �X•)

//α
Hom∆inj

(∆•,∆• �X•)

where X• = Hom•K(A′, A′′). The map β∗ is induced by taking totalizations of the following map of
cosimplicial spaces

β : ∆• � Hom(A′,K•A′′) //
f

Hom(A,K•A′) � Hom(A′,K•A′′) //
µ

Hom(A,K•A′′).

We first show that α∗ is a weak equivalence. For this we need the following lemma.

Lemma 1.17. Let X• be any cosimplicial space, and let j : ∆• �X• → X• be the map induced by
∆• → ∗. Then j is a levelwise weak equivalence of cosimplicial spaces.

Proof. For each m ≥ 0, we define
i : Xm → [∆• �X•]m

by the sequence

Xm ∼= ∆0 ×Xm ↪→
∐

p+q=m

∆p ×Xq → [∆• �X•]m.

Then ji is the identity on Xm. For each p, there is a ‘straight-line’ homotopy

h : ∆1 ×∆p → ∆p

between the identity and the constant map to the ‘terminal’ vertex of ∆p (i.e. the image of the
map ∆0 → ∆p induced by the map [0] → [p] in ∆inj given by 0 7→ p). These together induce a
homotopy

∆1 × [∆• �X•]m → [∆• �X•]m

between the identity map and ij. Thus j is a levelwise weak equivalence. �

Now post-compose α∗ with the weak equivalence

j∗ : Hom∆inj
(∆•,∆• �X•)→ Hom∆inj

(∆•, X•).

The resulting map
Hom∆inj

(∆•, X•)→ Hom∆inj
(∆•, X•)

is that induced by the composite
∆• //

∼=
α

∆• � ∆• //∼
j

∆•

and so is also a weak equivalence. Thus, α∗ is a weak equivalence.

It now follows that f induces an isomorphism in the homotopy category if and only if the map β∗

is a π0-isomorphism for all A′′.

Suppose first that f0 induces an isomorphism in the homotopy category of B. Then the map f∗0 in
the following diagram of spaces is a weak homotopy equivalence for each m ≥ 0:

Hom(A′,KmA′′) [∆• � Hom(A′,K•A′′)]m

Hom(A,KmA′′)

//i
∼

))

∼
f∗0

��

βm

Here i is the weak equivalence of Lemma 1.17. The above diagram commutes and so we deduce
that βm is a weak equivalence for all m. Therefore the induced map β∗ is a weak equivalence, so
in particular a π0-isomorphism.
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Conversely, suppose that β∗ is a π0-isomorphism for all K-coalgebras A′′. Then, in particular,
taking A′′ to be the cofree coalgebra KX for X ∈ B, we have diagrams of spaces

Tot(∆• � Hom(A′,K•KX)) Tot Hom(A,K•KX)

Tot Hom(A′,K•KX)

Hom(A′, X) Hom(A,X)

��

j ∼

//
β∗

��

∼

��

∼

//
f∗0

where the bottom-left and right-hand vertical maps are induced by the extra codegeneracies in the
coaugmented cosimplicial objects Hom(−,K•KX). Since β∗ is a π0-isomorphism, it follows that
f∗0 is also, i.e. that f0 induces bijections

[A′, X] //
∼=

[A,X]

for all X ∈ B, and hence induces an isomorphism in the homotopy category. �

Remark 1.18. There are, of course, alternative ways to construct a homotopy category of K-
coalgebras. One could, for example, start with the ordinary category BK whose morphisms are the
strict K-coalgebra maps, and invert those morphisms that are equivalences in B. It is not clear in
general if this should give the same homotopy category. The particular category we describe above,
however, is what appears in our version of homotopic descent theory, to which we now turn.

In the remainder of the paper, we work with categories enriched in simplicial sets rather than
topological spaces. The results of this section can easily be transported to that context using the
geometric realization and singular simplicial set functors. The following proposition summarizes
the situation.

Proposition 1.19. Let B be a category enriched in simplicial sets and let K : B → B be a
simplicially-enriched comonad. Then there is a simplicial-A∞-category BK whose objects are the
K-coalgebras, and with simplicial mapping spaces given by the singular simplicial sets

(1.20) H̃omK(A,A′) := Sing Tot(|HomB(A,K•A′)|).
Let f : A → A′ be a derived K-coalgebra map for which f0 : A → A′ arises from a morphism in
the simplicial category B. Then f induces an isomorphism in the associated homotopy category of
K-coalgebras if and only if f0 induces an isomorphism in the homotopy category of B.

Proof. We can make B into a topologically-enriched category by using the geometric realization
functor to define mapping spaces:

HomTop
B (X,X ′) := |HomB(X,X ′)|.

The simplicially-enriched functor K : B → B is then also enriched with respect to this topological
structure. The theory of this section now applies. In particular, Proposition 1.14 gives us a
topological-A∞-category whose objects are the K-coalgebras and whose mapping spaces are the
totalizations of the cosimplicial spaces

HomTop
B (A,K•A′) = |HomB(A,K•A′)|

and where composition is controlled by the A∞-operad A of Definition 1.12. Applying the singular
simplicial set functor to A and to these mapping spaces, we obtain a simplicial-A∞-category with
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simplicial sets of maps given by (1.20) and with composition controlled by an A∞-operad in sim-
plicial sets. The homotopy category of K-coalgebras is then given by applying π0 to the simplicial

sets H̃omK(A,A′) which is of course equivalent to applying π0 to the mapping spaces before taking
singular simplicial sets.

The process of forming a topological category from a simplicial category via geometric realization
changes the notion of ‘morphism’. A morphism X → X ′ in the topological category B is a point in
the geometric realization |HomB(X,X ′)|. Such a point may or may not arise from a vertex in the
simplicial set HomB(X,X ′), that is from a morphism in the simplicial category B. However, the
homotopy categories associated to the simplicial and topological enrichments of B are the same.
(We can apply π0 either before or after geometric realization.)

So let f : A → A′ be a derived K-coalgebra map for which the underlying map f0 : A → A′ does
arise from a morphism in the simplicial category B. Then it follows from 1.16 that f induces an
isomorphism in the homotopy category of K-coalgebras if and only if f0 induces an isomorphism
in the homotopy category of B. �

2. Descent for Quillen adjunctions

In this section we develop a homotopical version of descent theory for studying Quillen adjunctions
between model categories. Associated to any adjunction F : A � B : G, there is a ‘descent
theory’ that compares the category A with the category BK of coalgebras over the comonad K =
FG. Classically, this was developed by Grothendieck to study the extension/restriction of scalars
adjunction associated to a ring homomorphism.

Recently, interest has developed in ‘homotopic’ descent theory. (See, for example, Hess [15] and
Lurie [18, 4.7].) Now A and B are categories with some notion of homotopy, preserved by the
adjunction, and the question is whether the categoriesA and BK are equivalent in some homotopical
sense.

Here we develop part of such a theory for Quillen adjunctions satisfying the following conditions.

Hypothesis 2.1. We assume that A and B are simplicial model categories and that we have a
simplicially-enriched Quillen adjunction

(2.2) F : A� B : G.

We assume further that

(1) either:
(a) all objects in A are cofibrant; or
(b) A is Quillen equivalent to a combinatorial model category;

(2) all objects in B are fibrant.

The point of condition (1b) is that it allows us to replace A with a model category in which every
object is cofibrant: see Theorem 2.3 below. Note that all standard examples of cofibrantly generated
model categories are known to be Quillen equivalent to a combinatorial model category. (See [26]
for more on the connection.) In particular, this includes the categories of functors between based
spaces and spectra that we will use in this paper.

Condition (2) can be relaxed to include any model category B that admits a simplicial Quillen
equivalence to a model category in which all objects are fibrant: see Remark 2.7. The categories
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we have in mind for B already satisfy this condition so we do not need any greater generalization
here.

The comonad directly associated to the adjunction (2.2), that is FG, is not typically well-behaved
with respect to the homotopy theory. For example, if G does not take values in cofibrant objects,
there is no general reason why FG should preserve weak equivalences. In order to get a homotopi-
cally meaningful descent theory, we replace the adjunction (2.2) with one that does not have these
problems.

Theorem 2.3. Under the conditions of Hypothesis 2.1 there exists a simplicial model category Ac
in which every object is cofibrant, and a simplicial Quillen equivalence (with left adjoint u):

u : Ac � A : c.

Proof. When every object of A is cofibrant, we can of course take (u, c) to be the identity Quillen
equivalence. Under condition (1b) of 2.1, the existence of such an equivalence is due to Ching and
Riehl [8]. �

Remark 2.4. When A is itself a combinatorial simplicial model category (as opposed to merely
Quillen equivalent to one) we can be more concrete about the category Ac. In this case, it can be
taken to be the category of coalgebras over a simplicially-enriched cofibrant replacement comonad
for A, as constructed via the simplicial version of Garner’s small object argument. That there is a
suitable model structure on Ac is the content of [8].

Definition 2.5. We now fix a choice of the Quillen equivalence provided by Theorem 2.3 and
consider the composite of the two adjunctions (with left adjoints on top):

(2.6) Ac A B
u //

c
oo

F //

G
oo

Let (F ′, G′) be the functors in this composed Quillen adjunction, i.e. F ′ = Fu and G′ = cG. We
then view (F ′, G′) as a homotopically well-behaved version of the original adjunction (F,G). In
particular, notice that F ′ and G′ both preserve all weak equivalences.

We define a comonad K : B → B by

K = F ′G′

with comultiplication/counit maps coming from the unit/counit for the adjunction. The comonad
K is also simplicial because it a composite of simplicial functors.

Remark 2.7. Nikolaus shows in [22] that any cofibrantly generated model category B in which
trivial cofibrations are monomorphisms admits a Quillen equivalence

B � Bf

where every object in the model category Bf is fibrant. Specifically, Bf is the category of algebras
over a fibrant replacement monad constructed from Garner’s small object argument. A simplicial
version of Nikolaus’s argument could be used to relax condition (2) of Hypothesis 2.1. In this case
we would take the comonad K to be defined on Bf and to be that associated to the composite of
all three adjunctions

Ac � A� B � Bf .
The theory developed in the remainder of this section would then be unchanged, except that it
would provide a comparison between the category Ac and the coalgebras for a comonad on Bf
instead of on B.
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Our plan is now to develop the theory of Section 1 for the comonad K. In order to apply this,
however, we need to have an underlying category that is enriched in fibrant simplicial sets. We
therefore restrict to the subcategory of cofibrant objects in B.

Definition 2.8. Let B̃ denote the full subcategory of cofibrant objects in B. Since every object
in the simplicial model category B is fibrant, it follows that the category B̃ is enriched in fibrant
simplicial sets. Moreover, the comonad K restricts to a comonad

K : B̃ → B̃.
Applying the simplicial version of the theory of Section 1 (see Proposition 1.19), we obtain a

simplicial A∞-category B̃K whose objects are the K-coalgebras that are cofibrant in B, and with
simplicial mapping objects given by (1.20). Associated to B̃K is a homotopy category which we
refer to as the homotopy category of K-coalgebras.

Definition 2.9. For X ∈ Ac, the object F ′X has a canonical K-coalgebra structure induced by
the unit of the adjunction (F ′, G′) in the usual way. Moreover, F ′X = FuX is cofibrant in B and
so F ′ lifts to a functor

F ′ : Ac → B̃K .
This is a functor on the level of strict categories where the right-hand side is the usual category
of K-coalgebras. We are more interested, however, in thinking of the target of F ′ as a simplicial
A∞-category. In particular, F ′ induces natural maps of simplicial sets

(2.10) HomAc(X,X
′)→ H̃omK(F ′X,F ′X ′)

which commute with the relevant composition maps.

Definition 2.11. If f : X → X ′ is a weak equivalence in Ac then the induced map F ′(f) is a
derived (in fact, strict) map of K-coalgebras whose underlying map is a weak equivalence in B. By
Proposition 1.16, we therefore get an induced functor on the level of homotopy categories which we
denote by Ho(F ):

Ho(F ) : Ho(A) ∼= Ho(Ac)→ Ho(B̃K).

Our version of homotopic descent theory is concerned with the extent to which Ho(F ) is an equiva-
lence of categories. We start by describing how to recover an object in A from a K-coalgebra using
a cobar construction.

Definition 2.12. Let A be a K-coalgebra. The cosimplicial cobar construction on A is the cosim-
plicial object in Ac given by

C•(A) = G′(F ′G′)•A = G′K•A.

The coface maps δi : G′(F ′G′)mA→ G′(F ′G′)m+1A are given

• for i = 0, . . . ,m, by the unit 1→ G′F ′ applied before the i+ 1th copy of G′;
• for i = m+ 1 by the K-coalgebra structure on A;

and the codegeneracy σj : G′(F ′G′)mA→ G′(F ′G′)m−1A is given

• for j = 0, . . . ,m− 1 by applying the counit F ′G′ → 1 to the j + 1th copy of F ′G′.

We then define the cobar construction on a K-coalgebra A to be the object of Ac given by

C(A) := Tot(C•(A)).

This is the (restricted) totalization of a cosimplicial object in Ac formed using the cotensoring of Ac
over simplicial sets. Since the cosimplicial object C•(A) is levelwise fibrant, the cobar construction
C(A) is a fibrant object in Ac.



16 GREGORY ARONE AND MICHAEL CHING

Definition 2.13. For X ∈ Ac, there is a canonical map

ηX : X → C(F ′X) = Tot(G′(F ′G′)•F ′X)

induced by the map
X → G′F ′X

which is a coaugmentation for the cosimplicial cobar construction on F ′X.

We refer to the object C(F ′X) as the F ′-completion of X. If ηX is a weak equivalence, we say that
X is F ′-complete.

Definition 2.14. We say that a fibrant object X ∈ A is F -complete when the corresponding object
cX ∈ Ac is F ′-complete. In that case we have a zigzag of equivalences

X ←̃− ucX −̃→ uC(F ′cX)

so that X can be recovered, up to weak equivalence, from the K-coalgebra structure on F ′cX.

We now show that the functor Ho(F ) of Definition 2.11 embeds the homotopy category of F -
complete objects in A into the homotopy category of K-coalgebras. This follows from the following
result.

Proposition 2.15. For objects X,X ′ ∈ Ac with X ′ fibrant and F ′-complete, the natural map

HomAc(X,X
′)→ H̃omK(F ′X,F ′X ′),

is a weak equivalence of simplicial sets.

Proof. The given map can be written as the composite

HomAc(X,X
′) //

η∗
HomAc(X,Tot(G′(F ′G′)•F ′X ′))

∼= Tot HomAc(X,G
′(F ′G′)•F ′X ′)

∼= Tot HomB(F ′X, (F ′G′)•F ′X ′) ∼= H̃omK(F ′X,F ′X ′)

By assumption η is a weak equivalence between fibrant objects in Ac and so, as every object X ∈ Ac
is cofibrant, the first map in this composite is a weak equivalence. �

Corollary 2.16. Under the conditions of 2.1 the functor Ho(F ) of Definition 2.11 is a fully-faithful
embedding of the homotopy category of F -complete objects in A into the homotopy category of K-
coalgebras.

Proof. This follows by applying π0 to the weak equivalences of Proposition 2.15. �

The cobar construction C can be viewed as an ‘up-to-homotopy’ right adjoint to the functor

F ′ : Ac → B̃K .
The map η of Definition 2.13 plays the role of the unit for this adjunction and the completeness
condition is therefore a condition that this unit induces an isomorphism on the level of homotopy.
We now turn to the dual question of what plays the role of the counit and when this counit induces
an isomorphism.

Definition 2.17. Let A be a K-coalgebra. Then we define a derived map of K-coalgebras

ε : F ′C(A)→ A,

as follows. It follows from 1.11 that such an ε consists of maps of spaces

εn : ∆n → |HomB(F ′Tot(G′(F ′G′)•A), (F ′G′)nA)|.
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We define these to be the composites

∆n → |HomAc(Tot(G′(F ′G′)•A), G′(F ′G′)nA)|
→ |HomB(F ′Tot(G′(F ′G′)•A), F ′G′(F ′G′)nA)|
→ |HomB(F ′Tot(G′(F ′G′)•A), (F ′G′)nA)|

where the first map is the geometric realization of the map adjoint to the projection

Tot(G′(F ′G′)•A)→ Hom(∆n, G′(F ′G′)nA),

the second uses the simplicial enrichment of F ′, and the last involves the counit map

F ′G′ → 1.

Lemma 2.18. For a K-coalgebra A, the maps εn of Definition 2.17 determine a derived morphism
of K-coalgebras ε : F ′C(A)→ A.

Proof. We can check that the εn commute in a suitable way with the coface maps in the relevant
cosimplicial objects. �

The following result now gives us a condition for ε to induce an isomorphism in the homotopy
category.

Proposition 2.19. Let A be a K-coalgebra that is cofibrant in B. Then the derived K-coalgebra
map ε : F ′C(A)→ A induces an isomorphism in the homotopy category of K-coalgebras if and only
if the canonical map

F ′Tot(G′(F ′G′)•A)→ Tot(F ′G′(F ′G′)•A),

associated to the simplicial enrichment of F ′, is a weak equivalence in B. (Note that the Tot on the
left-hand side is calculated in Ac and that on the right-hand side is calculated in B.)

Proof. By Proposition 1.16, ε induces an isomorphism in the homotopy category if and only if the
map ε0 of Definition 2.17 induces an isomorphism in the homotopy category of B̃, hence if and only
if ε0 is a weak equivalence in the model category B. The map ε0 can be factored as

F ′Tot(G′(F ′G′)•A)→ Tot(F ′G′(F ′G′)•A) −̃→ A

where the first map is that associated to the simplicial enrichment of F ′, and the second is the
composite Tot(F ′G′(F ′G′)•A) → F ′G′A → A of the projection to 0-simplices with the counit for
the adjunction. That second map is a weak equivalence since the cosimplicial object (F ′G′(F ′G′)•A)
has extra codegeneracies. Therefore the overall map is a weak equivalence if and only if the first
factor is, which is the condition specified in the proposition. �

We are now in a position to give conditions that allow us to identity the image of the embedding
of Corollary 2.16. This is the content of our version of the Homotopic Barr-Beck Theorem.

Proposition 2.20. Let (F,G) be a Quillen adjunction as in 2.1. Let A0 be a collection of objects

in A and C0 a collection of objects in B̃K . Suppose that:

(1) for every object X ∈ A0, F ′cX ∈ C0 and X is F -complete;
(2) for every K-coalgebra A ∈ C0, uC(A) ∈ A0 and the canonical enrichment map

FuTot(G′(F ′G′)•A)→ Tot(FuG′(F ′G′)•A)

is a weak equivalence in B.
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Then the functor Ho(F ) : Ho(A) → Ho(B̃K) of Definition 2.11 restricts to an equivalence between
the full subcategories of these homotopy categories determined by the collections of objects A0 and
C0, respectively.

Proof. By Corollary 2.16, the first condition implies that Ho(F ) is a fully faithful embedding of the
homotopy category of A0 into the homotopy category of C0. The second condition implies, using
Proposition 2.19, that every object A of C0 is isomorphic in the homotopy category to one of the
form Ho(F )(X) for X ∈ A0 (namely X = uC(A)) and hence that Ho(F ) is essentially surjective on
objects. �

Remark 2.21. We have focused here on descent for the Quillen adjunction (2.2), but our approach
can be easily dualized to give a theory of codescent in which the category B is compared with the
category of algebras over the monad GF (or, rather G′F ′) associated to the adjunction.

3. Taylor towers and descent

We now turn to Goodwillie calculus and set up a general framework to describe how the Taylor
tower of a functor can be recovered from its layers.

Definition 3.1 (Spaces and spectra). Let Top∗ be the category of based compactly-generated
topological spaces, and Sp the category of S-modules of EKMM [9]. We refer to the objects of Sp
as spectra instead of S-modules.

We use the letters C and D to denote either of the categories Top∗ and Sp. These are cofibrantly
generated pointed simplicial model categories in which every object is fibrant. We use Hom(−,−)
to denote simplicial mapping objects with a subscript C or D to denote the underlying category.
Since C and D are pointed categories, these mapping objects are pointed simplicial sets.

In Sp we also have internal mapping objects, and we write Map(−,−) for the spectrum of maps
between two spectra.

We write Cfin for the full subcategory of C whose objects are the finite cell complexes in C with
respect to the chosen generating cofibrations. In particular, Cfin is a skeletally small category.

Definition 3.2 (Functor categories). Let [Cfin,D] be the category of pointed simplicially-enriched
functors F : Cfin → D and simplicial natural transformations. Here pointed means that F (∗) = ∗.
The category [Cfin,D] has a projective model structure that is also simplicial, cofibrantly generated
and pointed. Note that in each case the resulting model category is Quillen equivalent to a combina-
torial model category (for example, by replacing spaces with simplicial sets and EKMM S-modules
with symmetric spectra based on simplicial sets), and so satisfies condition (1) of Hypothesis 2.1.

We write Nat(F,G) for the simplicial set of natural transformations between two pointed simplicial

functors F,G : Cfin → D. We also write Ñat(F,G) for the simplicial set of derived natural trans-
formations from F to G which can be defined as Nat(cF, fG), where c and f denote cofibrant and

fibrant replacement in [Cfin,D], respectively. Note that π0(Ñat(F,G)) is the set of maps from F to
G in the homotopy category of functors.

Lemma 3.3. Let F : Cfin → D be a pointed simplicial functor. Then F preserves weak equivalences.

Proof. The objects in Cfin are both fibrant and cofibrant so a weak equivalence f : X −̃→ Y in Cfin

has a homotopy inverse g : Y → X. Since F is simplicial, it follows that Ff has Fg as a homotopy
inverse and so is also a weak equivalence. �
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Definition 3.4 (Taylor tower). Let F : Cfin → D be a pointed simplicial functor. Then there exists
a sequence of natural transformations

F → · · · → PnF → Pn−1F → · · · → P1F → ∗

in which PnF : Cfin → D is n-excisive (takes strongly homotopy cocartesian (n + 1)-cubes in Cfin

to homotopy cartesian cubes in D), and pn : F → PnF is, up to homotopy, the initial natural
transformation from F to an n-excisive functor. This is the Taylor tower of F (expanded at the
trivial object in C). See [13] for the details of these constructions.

Definition 3.5 (Derivatives). The layers of the Taylor tower are the functors

DnF := hofib(PnF → Pn−1F ).

Goodwillie shows in [13] that these are of the following form:

DnF (X) ' (Ω∞)(∂nF ∧ ((Σ∞)X∧n))hΣn

where ∂nF is a spectrum with Σn-action, and Ω∞, respectively Σ∞, is present if D, respectively C,
is equal to Top∗, and absent if equal to Sp. We refer to ∂nF as the nth derivative of F . Note that
the above formula determines only the homotopy type of the spectrum ∂nF . We choose specific
models for these spectra later in this paper.

In previous work [2], we have identified additional structure on the derivatives of a functor of based
spaces or spectra. This additional structure is stated in the language of operads which we now
briefly recall. Note that all our operads, modules and bimodules are in the category of spectra and
do not have a 0th term.

Definition 3.6 (Symmetric sequences of spectra, operads and their modules). Let [Σ,Sp] denote
the category of symmetric sequences of spectra, that is, functors Σ → Sp where Σ is the category
of nonempty finite sets and bijections. The category [Σ,Sp] has a cofibrantly generated pointed
simplicial model structure in which fibrations and weak equivalences are detected termwise. All
objects are fibrant in this model structure.

For a symmetric sequence A, we write An for the value of A on the finite set {1, . . . , n}. The
spectrum An then has an action of the symmetric group Σn and A is determined, up to isomorphism,
by the sequence A1, A2, A3, . . . together with these actions.

An operad consists of a symmetric sequence P together with a unit map S → P1 (where S is the
sphere spectrum) and composition maps

Pr ∧ Pn1 ∧ . . . ∧ Pnr → Pn1+···+nr

that are suitably equivariant, associative and unital.

For an operad P , a right P -module consists of a symmetric sequence A with suitable right P -action
maps

Ar ∧ Pn1 ∧ . . . ∧ Pnr → An1+···+nr

and a left P -module consists of a symmetric sequence M with suitable left P -action maps

Pr ∧An1 ∧ . . . ∧Anr → An1+···+nr .

For two operads P, P ′ we also have the notion of a (P, P ′)-bimodule, that is a symmetric sequence
with a left P -action and right P ′-action that commute.

Each of the categories of operads, left, right and bi- modules has a projective model structure
in which weak equivalences and fibrations are detected in the underlying category of symmetric
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sequences. These model structures are cofibrantly generated, pointed and simplicial, and every
object is fibrant. See [2, Appendix] for details.

Definition 3.7 (Truncated symmetric sequences). A symmetric sequence A is said to be N -
truncated if Ak = ∗ for k > N , and we say that A is bounded if it is N -truncated for some N .

We write A≤N for the N -truncation of the symmetric sequence A given by setting equal to ∗ the
terms Ak for k > N . If A is an operad, module or bimodule then A≤N inherits this structure
and there is a natural map A → A≤N that preserves the structure. In fact there is a tower (of
symmetric sequences, operads, modules or bimodules)

A→ · · · → A≤N → A≤(N−1) → · · · → A≤1.

Example 3.8. The derivatives of a pointed simplicial functor F : Cfin → D form a symmetric
sequence ∂∗F .

If I is the identity functor on based spaces, then there is a model for the symmetric sequence of
derivatives of I that has an operad structure. This model is formed by the Spanier-Whitehead
duals of the partition poset complexes, see [6]. We denote a cofibrant replacement for this operad
by ∂∗I.

In [2] the authors constructed models for functors to or from based spaces that are modules over
the operad ∂∗I. For F : Topfin

∗ → Sp, ∂∗F is a right ∂∗I-module, for F : Spfin → Top∗, ∂∗F is a left
∂∗I-module, and for F : Topfin

∗ → Top∗, ∂∗F is a (∂∗I, der∗I)-bimodule. These structures allow us
to define, in each case, a functor

∂∗ : [Cfin,D]→M
where M is the appropriate category of modules or bimodules. When C = D = Sp, we take M to
be the category of symmetric sequences.

One of the key observations of this paper is that this functor ∂∗ has a right adjoint. This is well-
known in the case D = Sp but is new when D = Top∗. We leave the construction of such adjunctions
to later sections that deal with each combination of C and D in turn. The anxious reader may turn
to Proposition 4.3 (for the case D = Sp) or Proposition 7.2 (for the case D = Top∗).

For the remainder of this section we make the following assumption about the existence of the right
adjoint to ∂∗.

Hypothesis 3.9. Let C and D each be either of the categories Top∗ or Sp, and let M be some
category of symmetric sequences, modules or bimodules, as in Definition 3.6. We assume given a
simplicial Quillen adjunction

∂∗ : [Cfin,D] �M : Φ

such that, for cofibrant F , the symmetric sequence ∂∗F is a natural model for the sequence of
Goodwillie derivatives of F .

Remark 3.10. As indicated in Example 3.8 there is a natural choice for the category M of
(bi)modules for each combination of choices of the categories C and D. However, it turns out that
the choice of right module structure is irrelevant. For example, when D = Sp, we can choose M
to be the category of symmetric sequences regardless of whether C is Top∗ or Sp. In fact, when we
analyze this case in Section 4, it will be convenient to do exactly that. Similarly, when D = Top∗,
we can takeM to be the category of left ∂∗I-modules for either choice of C. The underlying reason
for this is that the calculation of colimits inM is not affected by a choice of right module structure.
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The adjunction (∂∗,Φ) satisfies the conditions of Hypothesis 2.1 and so we are in a position to apply
the descent theory of Section 2. Recall that this involves choosing a simplicial Quillen equivalence

u : [Cfin,D]c � [Cfin,D] : c

such that every object in [Cfin,D]c is cofibrant, and then provides a comparison between the category
[Cfin,D] and the category of K-coalgebras, where K is the comonad ∂∗ucΦ.

In order to simplify the exposition, we henceforth drop the functors u and c from our notation.
The assiduous reader will work out all the places where these should be inserted.

This section has two main results. Theorem 3.13 identifies the functors F : Cfin → D that are
∂∗-complete in the sense of Definition 2.14, and hence those which can be recovered from the K-
coalgebra structure on their derivatives. Theorem 3.19 applies our Homotopic Barr-Beck Theorem
(2.20) to deduce that there is an equivalence between the homotopy category of N -excisive functors
and that of N -truncated K-coalgebras. In the proofs of both of these results, the following lemma
concerning the right adjoint Φ plays a key role.

Lemma 3.11. Let A be an N -truncated object in M. Then the functor ΦA is N -excisive.

Proof. We use the following characterization of N -excisive functors:

Claim. A functor G : Cfin → D is N -excisive if and only if any natural transformation F → G
factors, in the homotopy category of [Cfin,D], as

F //
pN

PNF → G.

Proof of Claim. The ‘only if’ direction is part of the universal property enjoyed by PN (see [13]).
For the ‘if’ direction, suppose that G is a functor such that every natural transformation F → G
factors as claimed. Then in particular, the identity natural transformation G → G factors, in the
homotopy category, as

G //
pN

PNG //α G.

Thus pN has a left inverse in the homotopy category. But composing the above sequence again
with pN , and applying the uniqueness part of the universal property enjoyed by PN , it follows that
pN ◦α is the identity on PNG. Thus pN also has a right inverse in the homotopy category, so is an
equivalence. Hence G is N -excisive. �

Now suppose A is N -truncated and apply the claim to ΦA. A natural transformation F → ΦA
corresponds under the adjunction of 3.9 to a map ∂∗F → A in M. Since A is N -truncated, this
map factors, in the homotopy category of M, as

∂∗(F )→ ∂∗(PNF )→ A

which corresponds, under the Quillen adjunction of 3.9 to a factorization

F → PNF → ΦA.

By the Claim, ΦA is N -excisive. �

Definition 3.12. Under the assumptions of 3.9, let K be the comonad on the category M given
by

KM := ∂∗ΦM.
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(Recall that we really mean K = ∂∗ucΦ but are dropping u and c from the notation.) Then, for
any pointed simplicial functor F : Cfin → D, the symmetric sequence ∂∗F (or, really, ∂∗ucF ) has
the structure of a K-coalgebra in M. The functor F is ∂∗-complete if the map

F → Tot(ΦK•∂∗F )

is a weak equivalence, that is, if F can be recovered from its derivatives together with their K-
coalgebra structure.

Theorem 3.13. Let C and D be either Top∗ or Sp and ∂∗ as in 3.9. For a pointed simplicial
functor F : Cfin → D the ∂∗-completion map

η : F → Tot(ΦK•∂∗F )

is, up to homotopy, a retract of the map

p∞ : F → holim
n

PnF

associated to the Taylor tower of F . In particular, if F is equivalent to the limit of its Taylor tower,
then F is ∂∗-complete.

Proof. Goodwillie constructs, in [13, 2.2], a functor

Rk : [Cfin,D]→ [Cfin,D]

such that, for any F ∈ [Cfin,D], RkF is k-homogeneous, and there is a natural fibration sequence
of functors:

PkF → Pk−1F → RkF.

In particular, RkF is a natural delooping of DkF .

Our proof of the theorem is based on the following commutative diagrams in which each column is
a fibration sequence of functors

(3.14)

Pk(F ) Tot(Pk(ΦK
•∂∗F ))

Pk−1(F ) Tot(Pk−1(ΦK•∂∗F ))

Rk(F ) Tot(Rk(ΦK
•∂∗F ))

��

//

��

//

�� ��

//

We show first, by induction on k, that all the horizontal maps in these diagrams are equivalences.
For this, it is sufficient, by the induction hypothesis, to show that the bottom horizontal map is an
equivalence.

The key point here is that the functor Rk factors via ∂∗. We define a functor Ψk :M→ [Cfin,D] by

Ψk(A)(X) := [Ω∞](Ak ∧X∧k)hΣk .

That is, Ψk is the functor that recovers DkF from ∂∗F . There is then a natural equivalence

RkG ' RkΨk∂∗G.

The bottom horizontal map of (3.14) is therefore equivalent to the map

RkΨk(∂∗F )→ Tot(RkΨk(K
•+1∂∗F )).
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This is the coaugmentation map for a cosimplicial object with extra codegeneracies (given by the
counit map for the extra copy of K that now appears) and so is a simplicial homotopy equivalence,
hence a weak equivalence in [Cfin,D].

We deduce then by induction that all the horizontal maps in (3.14) are natural weak equivalences.

The claim that η is a retract, up to homotopy, of p∞ then follows from the existence of the following
commutative diagram:

F Tot(ΦK•∂∗F ) holim
n

Tot(Φ(K•∂∗F )≤n)

holim
n

Pn(F ) holim
n

TotPn(ΦK•∂∗F ) holim
n

TotPn(Φ(K•∂∗F )≤n)

//
η

��

p∞

//∼

�� ��

∼

//∼ //

Since we have shown that the horizontal maps in (3.14) are equivalences, the bottom-left horizontal
map is an equivalence. The top-right horizontal map is an equivalence because the homotopy limit
commutes with both totalization and the right Quillen functor Φ, and because holimnA≤n ' A for
any A ∈M. The right-hand vertical map is an equivalence by Lemma 3.11.

Note that we do not claim the bottom-right horizontal map in the above diagram to be a weak
equivalence in general. If the Taylor tower of F converges, that is p∞ is an equivalence, then all
maps in this diagram are weak equivalences. �

It follows from Theorem 3.13 that if F is N -excisive for some N , then F can be recovered from the
K-coalgebra ∂∗F . More generally, for any F , we can recover PNF from the N -truncation ∂≤NF ,
together with its K-coalgebra structure.

Definition 3.15. We define a comonad K≤N on the subcategory of N -truncated objects inM by
setting

K≤N (A) := (KA)≤N .

We refer to a coalgebra over K≤N is an N -truncated K-coalgebra. Notice that if A is a K-coalgebra
in M, then the N -truncation A≤N is an N -truncated K-coalgebra.

When A is N -truncated object in M, Lemma 3.11 tells us that

(KA)r ' ∗
for r > N and so K≤NA ' KA. We therefore usually drop the distinction and just write K instead
of K≤N .

Corollary 3.16. For F ∈ [Cfin,D], we have

PnF ' Tot(ΦK•∂≤nF ).

With respect to these equivalences, the map PnF → Pn−1F is induced by the truncation map

∂≤nF → ∂≤(n−1)F.

Proof. Theorem 3.13 tells us that PnF is ∂∗-complete which means that

PnF ' Tot(ΦK•∂∗(PnF )).

It is therefore sufficient to notice that there is a levelwise equivalence of cosimplicial objects

ΦK•∂≤nF ' ΦK•∂∗(PnF ).

�
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Corollary 3.17. For F,G ∈ [Cfin,D] with G analytic in the sense of Goodwillie [12], there are
natural weak equivalences of simplicial sets

Ñat(F,holim
n

PnG) ' H̃omK(∂∗F, ∂∗G)

where the left-hand side is the simplicial set of derived natural transformations of Definition 3.2
and the right-hand side is the simplicial set of derived K-coalgebra maps of Definition 1.10.

Proof. When G is analytic, the functor holimn PnG has Taylor tower equivalent to that of G and
so is ∂∗-complete by Theorem 3.13. The result is then Proposition 2.15 in this context. �

Corollary 3.17 now implies in particular that ∂∗ determines a fully-faithful embedding of the ho-
motopy theory of N -excisive functors into that of N -truncated K-coalgebras. We now show that
this embedding is in fact an equivalence by verifying the hypothesis of our homotopic Barr-Beck
Theorem (Proposition 2.20).

Lemma 3.18. For any K-coalgebra A such that Ak ' ∗ for k > N , the map

∂∗Tot(ΦK•A)→ Tot(∂∗ΦK
•A)

is a weak equivalence of symmetric sequences.

Proof. This is similar to the proof of 3.13. Consider the following diagram in which the columns
are fibration sequences. (It is important here that ∂∗ preserves fibration sequences.)

∂∗Tot(PkΦK
•A) Tot(∂∗PkΦK

•A)

∂∗Tot(Pk−1ΦK•A) Tot(∂∗Pk−1ΦK•A)

∂∗Tot(RkΦK
•A) Tot(∂∗RkΦK

•A)

//

�� ��

//

�� ��

//

where Rk is a natural delooping of Dk. Since ΦK•A is N -excisive by Lemma 3.11, it is sufficient,
by induction on k, to show that the bottom-horizontal map is an equivalence for any k. But we
have

Rk = RkΨk∂∗

so this bottom map takes the form

∂∗Tot(RkΨkK
•+1A)→ Tot(∂∗RkΨkK

•+1A).

These cosimplicial objects both have extra codegeneracies and this map is therefore equivalent to
the identity on

∂∗RkΨkA

so is a weak equivalence. �

Theorem 3.19. There is an equivalence between the homotopy theory of N -excisive pointed sim-
plicial functors F : Cfin → D and that of N -truncated K-coalgebras. Letting N → ∞ we obtain
an equivalence between the homotopy category of all polynomial functors and that of all bounded
K-coalgebras.

Proof. This now follows from 3.18 and 2.20. �
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We conclude this section with a useful strengthening of Lemma 3.11. Suppose that A is an N -
truncated object ofM. Then not only is ΦA an N -excisive functor, but the counit map ∂∗ΦA→ A
induces an equivalence of N th terms, that is, of the highest non-trivial terms. We also have a dual
result, involving the unit of the adjunction (∂∗,Φ).

Proposition 3.20. Suppose F is an N -excisive functor. Then the unit map

F −→ Φ∂∗F

induces an equivalence of N th derivatives.

Proposition 3.21. Suppose A is an N -truncated object of M. The counit map

∂∗ΦA −→ A

induces an equivalence of N th terms of these symmetric sequences.

To prove the two propositions, we need a few preparatory lemmas that help us to detect DN -
equivalences.

Lemma 3.22. Let F,G ∈ [Cfin,D] be functors and assume that G is N -excisive. The map pN : F →
PNF induces a weak homotopy equivalence

Ñat(PNF,G) −→ Ñat(F,G).

Proof. Again we recall that the universal property of PN is that any natural transformation from
F to an N -excisive functor factors through pN , uniquely in the homotopy category of functors. It

follows that the map Ñat(PNF,G) −→ Ñat(F,G) is an isomorphism on π0. To prove that it is

an isomorphism on every homotopy group, note that for every i, πi(Ñat(F,G)) ∼= π0(Ñat(F,ΩiG))
and that if G is N -excisive then so is ΩiG. �

Corollary 3.23. Let F,G ∈ [Cfin,D]. Assume that PNF ' ∗ and that G is N -excisive. Then

Ñat(F,G) ' ∗.

Lemma 3.24. Let F,G be N -excisive. Let η : F −→ G be a natural transformation. The induced
natural transformation DN (η) : DNF −→ DNG is a weak equivalence if and only if the induced
map

Ñat(L, η) : Ñat(L,F ) −→ Ñat(L,G)

is a weak equivalence for all N -homogeneous functors L.

Proof. For every L and F there is a fibration sequence

Ñat(L,DNF ) −→ Ñat(L,PNF ) −→ Ñat(L,PN−1F ).

If L is N -homogeneous then, by Corollary 3.23, Ñat(L,PN−1F ) ' ∗. It follows that if F is N -
excisive there is a natural equivalence

Ñat(L,DNF ) ' Ñat(L,F ).

The same holds for G. Thus, if DN (η) : DNF −→ DNG is an equivalence then so is Ñat(L,DN (η)),

and therefore so is Ñat(L, η), as required.

Conversely suppose Ñat(L, η) is an equivalence for every N -homogenous functor L. Then so is

Ñat(L,DN (η)). It follows by a standard categorical argument that the map DN (η) is an iso-
morphism in the homotopy category of N -homogeneous functors, which is a sub-category of the
homotopy category of all functors. Thus DN (η) is a weak equivalence. �
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Recall that (∂∗,Φ) is an adjoint pair of functors between [Cfin,D] and M. Given two objects

A,B ∈ M let M̃(A,B) be the derived space of morphisms from A to B. For example, it can be
defined as the space of morphisms from a cofibrant replacement of A to a fibrant replacement of B.
(It is true that all objects are fibrant in M, so taking fibrant replacement is not necessary here.)

Lemma 3.25. As before, let L be an N -homogeneous functor and let F be N -excisive. Then ∂∗
induces an equivalence

Ñat(L,F )
'−→ M̃(∂∗L, ∂∗F ).

Proof. Consider the diagram

Ñat(L,DNF ) Ñat(L,F )

M̃(∂∗L, ∂∗DNF ) M̃(∂∗L, ∂∗F )

//

��

∂∗

��

∂∗

//

Our goal is to prove that the right vertical map is an equivalence. We do this by showing that
the other three maps are equivalences. We saw that the top horizontal map is an equivalence in
the proof of Lemma 3.24. The fact that the left vertical map is an equivalence is a consequence
of Goodwillie’s theorem that ∂∗ induces an equivalence between the category of N -homogeneous
functors and the category of spectra with an action of ΣN . For detailed calculations of this kind
see for example [3]. Finally the fact that the bottom horizontal map is an equivalence is an easy
calculation: because ∂∗L is concentrated in degree N , and ∂∗F is truncated at N , morphisms from
∂∗L to ∂∗F depend only on ∂NF = ∂∗DNF . �

Proof of Proposition 3.20. Let L ∈ [Cfin,D] be an N -homogeneous functor. Let F be an N -excisive
functor. By Lemma 3.11, Φ∂∗F is N -excisive. By Lemma 3.24 it is enough to show that the map

Ñat(L,F ) −→ Ñat(L,Φ∂∗F )

is a weak equivalence. Consider the commutative diagram

Ñat(L,F ) Ñat(L,Φ∂∗F )

M̃(∂∗L, ∂∗F ) M̃(∂∗L, ∂∗F )

//

��

∂∗

��

//=

.

Here the right vertical map is an equivalence expressing the adjunction between ∂∗ and Φ. The
left vertical map is an equivalence by Lemma 3.25. The bottom horizontal map is the identity. It
follows that the top horizontal map is an equivalence. �

Proof of Proposition 3.21. First assume that A is concentrated in degree N . There exists a functor
L such that ∂∗L = A. Indeed, L(X) = (Ω∞)(AN ∧X∧N )hΣN . Consider the maps in M

A = ∂∗L −→ ∂∗Φ∂∗L −→ ∂∗L = A.

Here the first map is ∂∗ applied to the unit of the adjunction L→ Φ∂∗L. By proposition 3.20 this

map induces an equivalence AN = ∂NL
'−→ ∂NΦ∂∗L. On the other hand, the composed map is

the identity A = A. It follows that the second map induces an equivalence ∂NΦA
'−→ AN .
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Now let A be any N -truncated object ofM. Let A<N be the truncation of A at N − 1 and let AN
be the N th term of A, considered as a symmetric sequence concentrated in degree N . There is a
fibration sequence in M

AN −→ A −→ A<N .

Both functors Φ and ∂∗ preserve fibration sequences. Therefore we have a diagram in M where
both rows are fibration sequences

∂∗ΦAN ∂∗ΦA ∂∗ΦA<N

AN A A<N

//

��

//

�� ��

// //

.

Consider the restriction of this diagram of the N -terms of all the sequences. Then the right vertical
map is a map between contractible objects and therefore is an equivalence. The left vertical map
is an equivalence by the special case of the proposition that we proved already. It follows that the
middle map is an equivalence. �

This concludes our description of the general theory. We now turn to more specific cases and discuss
how the adjunction of Hypothesis 3.9 can be constructed, and what the K-coalgebra structure
amounts to, in each case.

4. Functors with values in spectra

We now focus on functors F : Cfin → Sp where C is either Top∗ or Sp. Our first goal is to establish
the existence of an adjunction of the form described in Hypothesis 3.9, so that the theory of the
previous section can be applied. We get this adjunction by showing that the derivatives functor
∂∗ can be obtained by left Kan extension from its values on representable functors. Note that in
either of the cases C = Top∗,Sp we take the category catM of 3.9 to be just the category [Σ, Sp] of
symmetric sequences.

Definition 4.1. For X ∈ Cfin, we let RX : Cfin → sSet denote the representable functor defined by
the simplicial enrichment of C, that is,

RX(Y ) := HomC(X,Y ).

We fix models for the derivatives of the functors Σ∞RX : Cfin → Sp. That is, we fix a simplicially-
enriched functor

∂∗(Σ
∞R•) : (Cfin)op → [Σ,Sp]

whose value at X is a model for the symmetric sequence of derivatives of Σ∞RX . We also choose
this such that ∂∗(Σ

∞RX) is a cofibrant symmetric sequence for each X ∈ Cfin.

Definition 4.2. We define ∂∗F for arbitrary F ∈ [Cfin, Sp] by

∂∗F := F (X) ∧X∈Cfin ∂∗(Σ
∞RX).

This is an enriched coend calculated over the simplicial category Cfin and ∧ here denotes the
termwise smash product of a symmetric sequence with a spectrum. This definition produces a
simplicial functor

∂∗ : [Cfin,Sp]→ [Σ, Sp].
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Note that when F = Σ∞RX , this definition is canonically isomorphic (by an enriched Yoneda
Lemma) to the choice of ∂∗(Σ

∞RX) in Definition 4.1 so our notation is consistent. We can also
view ∂∗ as the enriched left Kan extension of ∂∗(Σ

∞R•) along the functor

(Cfin)op → [Cfin,Sp]; X 7→ Σ∞RX .

The following proposition is due to Peter Oman [23] in the case C = Top∗.

Proposition 4.3. For cofibrant F ∈ [Cfin,Sp], the symmetric sequence ∂∗F is naturally weakly
equivalent to the symmetric sequence of derivatives of F .

Proof. Let ∂G∗ F be a natural model for the actual derivatives of F . There is an assembly map
∂∗F → ∂G∗ F that is natural in F . (More precisely, it could be a zigzag of maps.) The claim
is that this is an equivalence for all cofibrant F . By the Yoneda Lemma the claim is true when
F is of the form Σ∞RX and any cofibrant functor can be built, up to weak equivalence, as a
homotopy colimit of these representable functors (for example, by the small object argument in the
cofibrantly-generated model category [Cfin,Sp]). Therefore, since both functors ∂∗ and ∂G∗ preserve
homotopy colimits of, and weak equivalences between, cofibrant functors, the claim is true for all
cofibrant F . �

Definition 4.4. The definition of the functor ∂∗ : [Cfin,Sp]→ [Σ,Sp] as a left Kan extension ensures
that it has a right adjoint. This right adjoint is the simplicial functor Φ : [Σ,Sp]→ [Cfin,Sp] given
by

Φ(A)(X) := MapΣ(∂∗(Σ
∞RX), A) ∼=

∏
n

Map(∂n(Σ∞RX), An)Σn .

Proposition 4.5. The adjunction

∂∗ : [Cfin, Sp] � [Σ,Sp] : Φ

satisfies the conditions of Hypothesis 3.9.

Proof. We have already seen that ∂∗ provides a model for the derivatives of a cofibrant functor.
The functor Φ preserves fibrations and trivial fibrations because these are detected objectwise in
both [Cfin,Sp] and [Σ, Sp]. Therefore (∂∗,Φ) is a Quillen adjunction. �

The results of Section 3 now apply. In particular, we conclude that the derivatives of a functor
F : Cfin → Sp possess the structure of a K-coalgebra where K is the comonad ∂∗Φ on the category
of symmetric sequences. The Taylor tower of F can be recovered from this K-coalgebra structure
by the formulas in Corollary 3.16.

In sections 5 and 6 below, we give an explicit (but only up to homotopy) description of the comonad
K in each of the cases where C is Sp and Top∗. There are, however, some common features to these
descriptions which we now outline.

Lemma 4.6. The comonad K : [Σ,Sp]→ [Σ, Sp] preserves finite homotopy limits. Thus, finite ho-
motopy limits of K-coalgebras can be calculated in the underlying category of symmetric sequences,
that is, termwise.

Proof. The right adjoint Φ preserves all homotopy limits. The nth derivative functor ∂n can be
constructed from F by applying Dn, taking the nth cross-effect, and evaluating at the 0-sphere
spectrum. Each of these constructions preserves finite homotopy limits, so ∂∗ does too. �
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Now any symmetric sequence A is equivalent to the product of its individual terms (viewed as
one-term symmetric sequences). It therefore follows from 4.6 that when K is applied to a bounded
symmetric sequence, the result splits up into terms corresponding to the pieces of the input. This
motivates the following definition.

Definition 4.7. For a Σn-spectrum An, we also denote by An the symmetric sequence consisting
of An in the nth term, with the trivial spectrum in all other terms. Then, for r ≤ n, we write

KrAn := (KAn)r = ∂r
(
X 7→ Map(∂n(Σ∞RX), An)Σn

)
.

This is the rth term in the symmetric sequence given by applying K to An. Notice that the
corresponding spectra are trivial for r > n by Lemma 3.11. For an N -truncated symmetric sequence
A, we then have a Σr-equivariant equivalence of spectra

K(A)r '
N∏
n=r

Kr(An).

For r ≤ s ≤ n the comonad structure map K → KK determines a map

δr,s : KrAn → KrKsAn

and the counit K → 1[Σ,Sp] determines

εr : KrAr → Ar.

We can now describe a K-coalgebra structure in terms of these individual maps.

Lemma 4.8. Let A be a K-coalgebra with structure map θ : A→ KA. Then, for positive integers
r ≤ n, θ determines Σr-equivariant maps

θr,n : Ar → KrAn

such that the diagrams

Ar KrAs

KrAn KrKsAn

//
θr,s

��

θr,n

��

θs,n

//
δr,s

and

Ar KrAr

Ar

//
θr,r

��

εr

commute.

Proof. The map θr,n is the composite

Ar //θ K(A)r → K(An)r = KrAn

where the second map is induced by the projection from a symmetric sequence A to An considered
as a symmetric sequence concentrated in the nth term. The given diagrams then follow from the
coassociativity and counit axioms for a K-coalgebra in Definition 1.2. �
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Corollary 4.9. Let F : Cfin → Sp be a pointed simplicial functor. Then there are Σr-equivariant
maps

θr,n : ∂rF → Kr∂nF

for r ≤ n, that are natural in F , such that the diagrams in Lemma 4.8 commute.

Lemma 4.10. The counit map εr : KrAr → Ar of 4.7 is a weak equivalence for any Σr-spectrum
Ar.

Proof. This is Proposition 3.21 applied to A = Ar (with the role of N in that proposition played
here by r). �

Lemma 4.10 removes the need to consider the maps θr,r as part of the coalgebra structure. The

K-coalgebra structure on ∂∗F for F ∈ [Cfin, Sp] is determined by the maps θr,n for r < n subject
only to the coassociativity conditions in the first diagram of Lemma 4.8.

As a consequence of Lemma 4.10 we get a description of the E1-page of the Bousfield-Kan spectral

sequence associated to the cosimplicial space that calculates the simplicial sets Ñat(F,G).

Proposition 4.11. Let F,G ∈ [Cfin, Sp] be pointed simplicial functors and let E be any spectrum.
Then there is a spectral sequence E∗∗,∗ with

E1
−s,t
∼=

⊕
1≤r0<···<rs

Et
(
Hom(∂r0F,Kr0Kr1 . . .Krs−1∂rsG)Σr0

)
and differential d1 equal to the alternating sum of maps induced by the comonad structure maps
δri,ri+1 and the K-coalgebra structure maps θr0,r1 for ∂∗F and θrs−1,rs for ∂∗G.

If G is N -excisive for some N , then the spectral sequence collapses at the En-page and converges
to the E-homology

Et−sÑat(F,G).

Proof. The decomposition of the comonad K via the constructions Kr allows us to write down a
Reedy fibrant model for the cosimplicial simplicial set

(4.12) HomΣ(∂∗F,K
•∂∗G).

We do this by replacing Ks(∂∗G) with the equivalent object∏
r0≤···≤rs

Kr0 . . .Krs−1∂rsG

where Kr is now defined to be the identity on a Σr-spectrum.

The codegeneracies are now inclusions and the coface maps given by the relevant comonad and
coalgebra structure maps δ and θ. It is easy to see this is Reedy fibrant since the matching maps
are projections from a product onto one of its terms and all objects are fibrant in the underlying
category. The given formula now follows by the standard form for the Bousfield-Kan spectral
sequence.

If G is N -excisive then the spectral sequence is restricted to the region where 0 ≤ s ≤ N − 1 so
collapses at the EN page. The cosimplicial simplicial set (4.12) is degenerate above the N th level
and so the spectral sequence converges to the E-homology of its totalization. By Corollary 3.17,
this is equivalent to the E-homology of Nat(F,G). �
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Remark 4.13. There is a similar spectral sequence based on the cosimplicial cobar construction
ΦK•∂∗G that, if G is N -excisive for some N , converges to the E-homology of the spectrum G(X).

Before turning to the specific cases [Spfin,Sp] and [Topfin
∗ ,Sp], we look at what our results say about

classifying the extensions in the Taylor tower of a functor F : Cfin → Sp.

Goodwillie proved in [13] that the fibration sequence

DnF −→ PnF −→ Pn−1F

can be extended to the right. That is, there exists a functor RnF and a natural fibration sequence

PnF −→ Pn−1F −→ RnF.

In particular, RnF is a delooping of DnF . This theorem is important for understanding Taylor
towers of space-level functors. On the other hand, for spectrum-valued functors it is a triviality.
This raises the question whether for spectrum-valued functors the map PnF −→ Pn−1F can be
classified in an interesting way by means of a universal fibration. For functors from Sp to Sp this
was essentially answered by McCarthy [19] (see also [17]). We now recover McCarthy’s result with
our methods, and show how it can be extended to functors from Top∗ to Sp.

Proposition 4.14. For F ∈ [Cfin,Sp] and n ≥ 2, there is a homotopy pullback square, natural in
X, of the form

PnF (X) (Φ∂nF )(X)

Pn−1F (X) Pn−1(Φ∂nF )(X).

//

�� ��

//

where Φ∂nF denotes the value of the functor Φ applied to ∂nF viewed as a symmetric sequence
concentrated in its nth term.

Proof. By Lemma 3.11, Φ∂nF is n-excisive. It is sufficient to show that there is a natural transfor-
mation

PnF → Φ∂nF

that becomes an equivalence after applying Dn.

By Proposition 3.20 we have a Dn-equivalence

(4.15) PnF → Φ∂∗(PnF ) ' Φ∂≤nF.

Now Φ commutes with products so we have

Φ∂≤nF '
n∏
k=1

Φ∂kF.

By Lemma 3.11 again each Φ∂kF is k-excisive, so the projection map

Φ∂≤nF → Φ∂nF

is a Dn-equivalence. Composing this with (4.15) gives the required natural transformation. �

Remark 4.16. We only proved the proposition for C being Top∗ or Sp, but it seems likely that
there is a corresponding result for a more general class of categories.
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Corollary 4.17. Let C be Top∗ or Sp and let F ∈ [Cfin, Sp]. Let X ∈ Cfin. If C = Sp then for every
n ≥ 1 there is a homotopy pullback square, natural in X

PnF (X)
(
∂nF ∧X∧n

)hΣn

Pn−1F (X) TateΣn

(
∂nF ∧X∧n

)
.

//

�� ��

//

If C = Top∗ then the pullback square has the following form

PnF (X)
(
∂nF ∧X∧n/∆nX

)
hΣn

Pn−1F (X) (∂nF ∧ Σ∆nX)hΣn
.

//

�� ��

//

where ∆nX is the fat diagonal inside X∧n.

Proof. In Corollary 5.11 below we see that when C = Sp, we have

Φ∂nF (X) ' (∂nF ∧X∧n)hΣn .

So the assertion here is that there is an equivalence

Pn−1

(
∂nF ∧X∧n

)hΣn ' TateΣn

(
∂nF ∧X∧n

)
.

It is well-known, and is easy to prove that the norm map(
∂nF ∧X∧n

)
hΣn

//N (
∂nF ∧X∧n

)hΣn

induces an equivalence of nth cross-effects. Since the target of this norm map is an n-excisive
functor, the norm map is equivalent to the map

Dn

(
∂nF ∧X∧n

)hΣn −→
(
∂nF ∧X∧n

)hΣn .

It follows that the Tate construction, which is the homotopy cofibre of the norm map, is the

(n− 1)-excisive approximation to (∂nF ∧X∧n)hΣn .

In the case C = Top∗, Corollary 6.16 below tells us that

Φ∂nF (X) ' (∂nF ∧X∧n/∆nX)hΣn .

When X is a finite based complex, the space X∧n/∆nX can be built from finitely many free
Σn-cells. It follows that the norm map

(∂nF ∧X∧n/∆nX)hΣn −→ (∂nF ∧X∧n/∆nX)hΣn

is an equivalence. This establishes the top-right corner of the required square. It remains to prove
that

Pn−1

(
X 7→ (∂nF ∧X∧n/∆nX)hΣn

)
' (∂nF ∧ Σ∆nX)hΣn .

To see this, consider the homotopy fibration/cofibration sequence

Σ∞X∧n −→ Σ∞X∧n/∆nX −→ Σ∞Σ∆nX.

Smashing it with ∂nF and taking homotopy orbits we obtain a fibration/cofibration sequence

(∂nF ∧X∧n)hΣn −→ (∂nF ∧X∧n/∆nX)hΣn −→ (∂nF ∧ Σ∆nX)hΣn .
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Clearly, the fibre in this sequence is an n-homogeneous functor. It is easy to prove that the base
is (n− 1)-excisive (it is the homotopy colimit of (n− 1)-excisive functors). It follows that the map
from the total space to the base is projection on the (n− 1)th Taylor polynomial. �

5. Functors from spectra to spectra

We now turn to the specific case where C = Sp, that is, we look at Taylor towers of pointed
simplicial functors F : Spfin → Sp. Our goal in this section is to calculate the objects KrAn and the
maps δr,s from Definition 4.7 in this case. These are given in Propositions 5.2 and 5.8 respectively.

Our description relies on certain symmetric group actions on sphere spectra.

Definition 5.1. Let L be a non-negative integer and let SL denote the suspension spectrum of the
based topological L-sphere. For positive integers n, r we write

SL(n−r) := Map((SL)∧r, (SL)∧n).

This has commuting actions of the symmetric groups Σr and Σn by permutation on the two smash
powers respectively.

For an integer n ≥ 1 we denote the set {1, . . . , n} by n. Now suppose we are given a surjection
α : n� r.

For positive integers L < L′ there is an isomorphism

SL
′ ∼= SL ∧ SL′−L

arising from the canonical inclusion of RL in RL′ via the first L coordinates. We then have a map

iL,L
′

α : SL(n−r) → SL
′(n−r)

that is adjoint to the composite

(SL
′
)∧r ∧Map((SL)∧r, (SL)∧n) //

∼=
(SL

′−L)∧r ∧ (SL)∧r ∧Map((SL)∧r, (SL)∧n)

// (SL
′−L)∧r ∧ (SL)∧n

//α#

(SL
′−L)∧n ∧ (SL)∧n

//
∼=

(SL
′
)∧n

The second map is the canonical evaluation, and the third is constructed from the diagonal map
on the suspension spectrum SL

′−L via the surjection α.

We then have the following description of the pieces of the comonad K : [Σ,Sp] → [Σ,Sp]. The
proof of this result starts with Lemma 5.10 later in this section.

Proposition 5.2. In the classification of Taylor towers of functors F : Spfin → Sp we have the
following calculation. For a Σn-spectrum An, there is a Σr-equivariant equivalence of spectra

KrAn ' hocolim
L→∞

(∏
n�r

An ∧ SL(n−r)

)hΣn
 .

The product is over the set of surjections α : n� r. The symmetric group Σn acts on the product
by composition and via the diagonal of its actions on An and SL(n−r). The homotopy colimit is

formed over the diagram formed by the maps iL,L
′

α of Definition 5.1.
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Remark 5.3. The orbits of the action of Σn on the set of surjections n � r are in one-to-one
correspondence with ordered partitions n = n1 + · · ·+nr of n into positive integers n1, . . . , nr. The
stabilizer for the orbit corresponding to such a partition is isomorphic to the subgroup

Σn1 × · · · × Σnr ⊆ Σn.

It follows that the formula for KrAn can be rewritten as

KrAn '
∏

n=n1+···+nr

hocolim
L→∞

[(
An ∧ SL(n−r)

)hΣn1×···×Σnr
]

where the product is over the set of ordered partitions of n into positive integers n1, . . . , nr.

Corollary 5.4. For a pointed simplicial functor F : Spfin → Sp, and r < n, there are natural
Σr-equivariant maps

θr,n : ∂rF → hocolim
L→∞

(∏
n�r

An ∧ SL(n−r)

)hΣn


that encode the K-coalgebra structure map for ∂∗F . Equivalently, these can be described in terms
of a map

θ(n1,...,nr) : ∂rF → hocolim
L→∞

[(
An ∧ SL(n−r)

)hΣn1×···×Σnr
]

for each partition n = n1 + · · ·+ nr.

We now turn to the maps δr,s that encode the comonad structure. To describe these it is convenient
to observe the following formula for KrKsAn.

Proposition 5.5. For positive integers r < s < n, we have

KrKsAn ' hocolim
M→∞

hocolim
N→∞

[ ∏
n�s�r

An ∧ SN(n−s) ∧ SM(s−r)

]hΣn
hΣs

.

Proof. This follows from Proposition 5.2 by observing that finite products commute with both
homotopy fixed points and smash products in the category of spectra. �

We also need to understand how the symmetric group actions on the spheres SL(n−r) fit together.

Definition 5.6. For positive integers L, n, r and s, there are natural composition maps

c : Map((SL)∧r, (SL)∧s) ∧Map((SL)∧s, (SL)∧n)→ Map((SL)∧r, (SL)∧n)

or, in the notation of 5.1,

c : SL(s−r) ∧ SL(n−s) → SL(n−r).

Note that these maps are weak equivalences of spectra and are equivariant with respect to actions
of Σn, Σs and Σr. (The Σs-action is the diagonal action on the source and is trivial on the target.)

For each c we fix an inverse

c−1 : SL(n−r) → SL(s−r) ∧ SL(n−s)

in the homotopy category of spectra with Σn × Σs × Σr action.
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Lemma 5.7. For surjections α : n � s and β : s � r, the following diagram commutes in the
homotopy category:

SL(n−r) SL(s−r) ∧ SL(n−s)

SL
′(n−r) SL

′(s−r) ∧ SL′(n−s)
��

iL,L
′

β◦α

//c−1

��

iL,L
′

β ∧iL,L
′

α

//c−1

where the vertical maps are as in Definition 5.1.

Proof. The maps c commute strictly with the vertical maps so their inverses commute in the
homotopy category. �

We then have the following description of the comonad structure maps.

Proposition 5.8. For positive integers r < s < n, and with respect to the equivalences of 5.2 and
5.5, the comonad structure map

δr,s : KrAn → KrKsAn

takes the form

hocolim
L→∞

(∏
n�r

An ∧ SL(n−r)

)hΣn
 hocolim

M→∞

hocolim
N→∞

[ ∏
n�s�r

An ∧ SN(n−s) ∧ SM(s−r)

]hΣn
hΣs

//
δr,s

and, in the homotopy category, is induced by the map

∏
n�r

An ∧ SL(n−r) →

[ ∏
n�s�r

An ∧ SL(n−s) ∧ SL(s−r)

]hΣs

which composes surjections and applies c−1 of Definition 5.6. The Σs-equivariance of c−1 implies
that this lands in the Σs-fixed points and hence the homotopy fixed points.

The map δr,s is then obtained by applying the Σn-homotopy fixed points, commuting them with
the Σs-homotopy fixed points, and including into the homotopy colimits as the terms M = L and
N = L.

Remark 5.9. Propositions 5.2 and 5.8 can be interpreted in terms of a certain pro-operad of
spectra. The pro-operad is a tower of operads, where the nth spectrum of the Lth operad is
SL(1−n). Associated to each operad SL(1−∗) is a comonad KL whose coalgebras are precisely the
right SL(1−∗)-modules. The comonad K is then equivalent (as a comonad) to the homotopy colimit
of the KL.

We now turn to the proofs of Propositions 5.2 and 5.8. Following the general approach of Section
4, this involves first understanding the derivatives of the representable functors in [Spfin,Sp]. These
are given by the following lemma.

Lemma 5.10. For X ∈ Spfin, we have

∂n(Σ∞HomSp(X,−)) ' D(X∧n)

with Σn-action given by permuting the factors of X.
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Proof. This result is well-known. It follows, for example, from the models for the derivatives of
functors from spectra to spectra described in [2, 3.1.4]. �

Corollary 5.11. The functor ∂∗ : [Spfin,Sp] → [Σ, Sp] has right adjoint Φ : [Σ, Sp] → [Spfin, Sp]
that satisfies

Φ(A)(X) '
∞∏
n=1

(An ∧X∧n)hΣn .

Proof of Proposition 5.2. It follows from Corollary 5.11 that the spectrum KrAn is given by the
rth derivative of the functor

X 7→ (An ∧X∧n)hΣn .

We calculate this using cross-effects. The rth cross-effect of (An ∧X∧n) is

(X1, . . . , Xr) 7→
∏
α:n�r

An ∧Xn1
1 ∧ . . . ∧X

nr
r

where we are writing nj := |α−1(j)|.

Since cross-effects commute with homotopy fixed points, the rth cross-effect of (An ∧ X∧n)hΣn is
then

(X1, . . . , Xr) 7→

[ ∏
α:n�r

An ∧Xn1
1 ∧ . . . ∧X

nr
r

]hΣn

.

According to [13], we can now recover the rth derivative by multilinearizing. This gives us

KrAn ' hocolim
L→∞

Map

(SL)∧r,

[ ∏
α:n→r

An ∧ (SL)∧n1 ∧ . . . ∧ (SL)∧nr

]hΣn
 .

The terms in this homotopy colimit are clearly equivalent to(∏
n�r

An ∧ SL(n−r)

)hΣn

so it remains to show that the maps between these terms are given by the iL,L
′

α of Definition 5.1.

For this we note that the stabilization maps are given by the topological enrichment of the cross-
effect functor which yields maps

crn(F )(SL, . . . , SL) ∧ SL′−L ∧ . . . ∧ SL′−L → crn(F )(SL
′
, . . . , SL

′
).

(Here we are using the fact that the spectra SL
′−L are suspension spectra. The cross-effect functors

are not strictly enriched over based spaces, but are enriched in an up-to-homotopy sense that is
sufficient for us.) The topological enrichment of the functor X 7→ X∧n is given by the diagonal of
the space being tensored with. It follows that the stabilization map in our case is given by the map

(An ∧ (SL)∧n1 ∧ . . . ∧ (SL)∧nr) ∧ SL′−L ∧ . . . ∧ SL′−L → (An ∧ (SL
′
)∧n1 ∧ . . . ∧ (SL

′
)∧nr)

that applies the diagonal

α# : (SL
′−L)∧r → (SL

′−L)∧n.

This is equivalent to the description of iL,L
′

α in Definition 5.1. �



A CLASSIFICATION OF TAYLOR TOWERS 37

We now turn to Proposition 5.8. The comonad structure maps δr,s : KrAn → KrKsAn are derived
from the unit map of the (∂∗,Φ) adjunction, that is, the map

η : F → Φ∂∗F.

It follows from Corollary 5.11 that η is built from natural transformations

ηs : F (X)→ (∂sF ∧X∧s)hΣs .

The structure map δr,s is given by applying ∂r to the natural transformation ηs associated to the

functor F (X) = (An ∧ X∧n)hΣn . The first step in proving Proposition 5.8 is therefore to get a
better understanding of the maps ηs. In order to express these we use the ‘co-cross-effects’.

Definition 5.12 (Co-cross-effect). For a pointed simplicial functor F : Spfin → Sp, the nth co-
cross-effect is the functor of n-variables, denoted by crn(F ), given by

crn(F )(X1, . . . , Xn) := thocofib
S⊆n

F

(∏
i∈S

Xi

)
This is the total homotopy cofibre of an n-cube, as defined by Goodwillie [12, 1.4].

For functors from spectra to spectra, the nth co-cross-effect is naturally equivalent to the nth cross-
effect [7, 2.2] and hence its multilinearization can be used to calculate the nth derivative. We
therefore have

∂nF ' hocolim
L→∞

Map((SL)∧n, crn(F )(SL, . . . , SL)).

Definition 5.13 (Assembly map equivalence). Goodwillie established in [13, §5] the relationship
between the cross-effects and the derivatives. Central to this is the existence of an equivalence (for
finite cell spectra X1, . . . , Xn)

∂nF ∧X1 ∧ . . . ∧Xn
//∼ hocolim
L→∞

Map((SL)∧n, crn(F )(ΣLX1, . . . ,Σ
LXn)).

We refer to this as the assembly map equivalence and it describes how a symmetric multilinear
functor (in this case the multilinearized co-cross-effect) can be described with a single coefficient
spectrum (in this case ∂nF ).

In the case that X1, . . . , Xn are suspension spectra, the assembly map equivalence can be described
at the level of co-cross-effects (i.e. before multilinearizing). In this case there are natural maps

crn(F )(SL, . . . , SL) ∧X1 ∧ . . . ∧Xn → crn(SL ∧X1, . . . , S
L ∧Xn)

that arise from the simplicial enrichment of the co-cross-effect functor in each variable. (Strictly
speaking, this map only exists up to certain inverse equivalences which we suppress.) Looping and
taking the homotopy colimit as L→∞ we get the assembly map equivalence as described above.

With this in mind, we can describe the maps ηn as follows.

Proposition 5.14. For a functor F : Spfin → Sp, the map ηn is equivalent to the composite

F (X) //∆
F (X × · · · ×X)hΣn

//ι
crn(F )(X, . . . ,X)hΣn

//i
[
hocolim
L→∞

Map
(
(SL)∧n, crn(F )(ΣLX, . . . ,ΣLX)

)]hΣn

//∼
(∂nF ∧X∧n)hΣn
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where ∆ is induced by the diagonal X → X × · · · ×X, ι is the map from the terminal object of a
cube to its total homotopy cofibre, i is the inclusion as the L = 0 term and the final equivalence is
an inverse to the assembly map equivalence of 5.13.

Proof. We show first that this calculation is valid for representable functors. Suppose F = Σ∞RY
for some Y ∈ Spfin. Then the map

ηn : Σ∞RY (X)→ Φ∂n(Σ∞RY )(X) = Map(∂n(Σ∞RX), ∂n(Σ∞RY ))Σn ' Map(Y ∧n, X∧n)Σn

is given, for formal reasons, by the simplicial enrichment of the functor X 7→ X∧n. This is adjoint
to the diagonal map

Hom(Y,X) //∆ [
Hom(Y,X)∧n

]Σn → Hom(Y ∧n, X∧n)Σn ∼= Ω∞Map(Y ∧n, X∧n)Σn .

On the other hand, the composite in the statement of the lemma is equivalent to

Σ∞Hom(Y,X) //∆
[Σ∞Hom(Y,X)n]Σn

//ι
[Σ∞Hom(Y,X)∧n]Σn

//i
[Map(Y,X)∧n]Σn

//∼
Map(Y ∧n, X∧n)Σn

which is therefore equivalent to ηn.

Now take an arbitrary F : Spfin → Sp. The composite

F (X) //
ηn

(∂nF ∧X∧n)hΣn → (∂nF ∧X∧n)

is equivalent, by naturality of ηn, to

F (Y ) ∧Y ∈Spfin RY (X) //
ηn
F (Y ) ∧Y ∈Spfin [∂n(RY ) ∧X∧n]hΣn → F (Y ) ∧Y ∈Spfin ∂n(RY ) ∧X∧n

which, from the calculation for RY , we know to be equivalent to the composite

F (Y ) ∧Y RY (X)→ F (Y ) ∧Y RY (X × · · · ×X)

→ F (Y ) ∧Y crn(RY )(X, . . . ,X)

→ F (Y ) ∧Y ∂n(RY ) ∧X∧n

which is equivalent to

F (X)→ F (X × · · · ×X)→ crn(F )(X, . . . ,X)→ (∂nF ∧X∧n).

The factorization via homotopy fixed points is unique up to homotopy, so this completes the
proof. �

Remark 5.15. The maps ηn have been previously studied by McCarthy [19]. He used them to
show how the n-excisive approximation PnF can be built from Pn−1F and DnF via a certain Tate
spectrum. Since our goal here is also to understand how PnF is built from its pieces, it should not
be a surprise to see this map appearing here too.

Example 5.16. When F is the n-homogeneous functor given by

F (X) = (An ∧X∧n)hΣn

the map ηn is equivalent to the norm map of Greenlees-May [14]

N : (An ∧X∧n)hΣn → (An ∧X∧n)hΣn

from homotopy orbits to homotopy fixed points.

We are now in a position to calculate the comonad structure maps δr,s : KrAn → KrKsAn.
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Proof of Proposition 5.8. Recall that δr,s is given by applying ∂r to the unit map ηs of Proposition

5.14 in the case that F (X) = (An ∧X∧n)hΣn . Recalling the form of the sth cross-effect of F from
the proof of 5.2 we see that ηs is the composite

(An ∧X∧n)hΣn //∆

[∏
n�s

An ∧X∧n
]hΣn

hΣs

//

hocolim
N→∞

[∏
n�s

An ∧ SN(n−s) ∧X∧n
]hΣn

hΣs

←̃−

hocolim
N→∞

[∏
n�s

An ∧ SN(n−s)

]hΣn

∧X∧s
hΣs

where the first map ∆ is the diagonal, the second is inclusion as the N = 0 term of the homotopy
colimit, and the third is the inverse of the assembly map equivalence of 5.13, applied to the sth

cross-effect of the functor F (X) = (An ∧ X∧n)hΣn . This equivalence is valid for all finite cell
spectra X, but is easiest to describe in the case that X is a suspension spectrum. In that case,
each surjection α : n� s determines a diagonal map

α# : X∧s → X∧n

and the assembly map equivalence above is built from these.

To get δr,s we now apply ∂r to this composite. First we take the rth cross-effect. Under the

identification again of the rth cross-effect of X∧n in terms of surjections, and noting that cross-
effects commute with homotopy colimits, products, homotopy fixed points and smash products, we
get the composite

[∏
n�r

An ∧X∧n
]hΣn

//

[∏
n�s

∏
n�r

An ∧X∧n
]hΣn

hΣs

//

hocolim
N→∞

[∏
n�s

∏
n�r

An ∧ SN(n−s) ∧X∧n
]hΣn

hΣs

←̃−

∏
s�r

hocolim
N→∞

[∏
n�s

An ∧ SN(n−s)

]hΣn

∧X∧s
hΣs

To get the map δr,s we now multilinearize the cross-effects and apply to the sphere spectrum.
(Note that the expressions in the above formula are really functors of r variables that have been
diagonalized, and that we are multilinearizing the underlying functors of r variables.) This therefore



40 GREGORY ARONE AND MICHAEL CHING

tells us that δr,s is equivalent to the composite

hocolim
L→∞

[∏
n�r

An ∧ SL(n−r)

]hΣn

// hocolim
L→∞

[∏
n�s

∏
n�r

An ∧ SL(n−r)

]hΣn
hΣs

// hocolim
L→∞

hocolim
N→∞

[∏
n�s

∏
n�r

An ∧ SN(n−s) ∧ SL(n−r)

]hΣn
hΣs

←̃− hocolim
L→∞

∏
s�r

hocolim
N→∞

[∏
n�s

An ∧ SN(n−s)

]hΣn

∧ SL(s−r)

hΣs

where the first map is a diagonal and the second is inclusion as the term N = 0.

The third map in the above composite is based on the assembly map equivalence and hence on the
diagonal map

α# : (SL)∧s → (SL)∧n

associated to a surjection α : n� s. Applying the rth cross-effect to this diagonal map gives a map

α∗ :
∏
s�r

(SL)∧s →
∏
n�r

(SL)∧n

for which the component associated to a surjection β : n� r depends on whether β factors as

n //α s //
γ
r

for some surjection γ (which is unique if it exists). If it does factor thus, then the required component
of α∗ is projection onto the term corresponding to γ followed by the diagonal. If it does not factor
thus, then that component is the trivial map. The third map in the composite above is therefore
determined by α∗.

Our claim then is that this composite is induced, in the homotopy category, by the maps

c−1 : SL(n−r) → SL(s−r) ∧ SL(n−s)

of Definition 5.6 together with various natural inclusions and projections. The truth of this boils
down to the following claim: that for each surjection α : n� s the diagram

Map(SLs, SLn) ∧Map(SLr, SLs) Map(SLr, SLn)

Map(SLs, SLn) ∧Map(SLr, SLn)

**
(1,∆)

//c

��

i0,Lα

commutes up to a homotopy that is compatible with the action of the group Σr ×Σn1 × · · · ×Σns ,
where n1, . . . , ns are the inverse images of α. The homotopy also needs to be natural in L. In this

diagram, c is the composition map, i0,Lα is the composed map

Map(SLr, SLs)
'−→ S0 ∧Map(SLr, SLs) −→ Map(SLs, SLn) ∧Map(SLr, SLs)

where the second map uses the map S0 −→ Map(SLs, SLn), which is adjoint to the diagonal map
α] : SLs → SLn induced by α. The map (1,∆) is the identity on the factor Map(SLs, SLn) and,
again, uses the map α] : SLs → SLn to get a map

Map(SLr, SLs) −→ Map(SLr, SLn).



A CLASSIFICATION OF TAYLOR TOWERS 41

We need to show that the resulting two maps

Map(SLs, SLn) ∧Map(SLr, SLs) −→ Map(SLs, SLn) ∧Map(SLr, SLn)

are naturally homotopic. If one desuspends the two maps by SL(s−r) then they are naturally
equivalent to two maps

Map(SLs, SLn) −→ Map(SLs, SLn) ∧Map(SLs, SLn)

given by f 7→ f ∧ α] and f 7→ α] ∧ f . To see that these two maps are homotopic we note that
these maps, which were defined as stable maps, are in fact (naturally equivalent to) stabilizations

of space level maps. Namely, SL(n−s) is naturally equivalent to the suspension spectrum of the
one-point compactification of the orthogonal complement of RLs in RLn. The fact that the two
maps are homotopic now boils down to the following elementary assertion: Let W be a vector
space. The two natural inclusions SW → SW ∧ SW , given by w 7→ w ∧ S0 and w 7→ S0 ∧ w are
naturally homotopic. The homotopy is given by the one-point compactification of the linear map
w 7→ (w cos t, w sin t), where 0 ≤ t ≤ π

2 . �

This completes our description of the comonad K in the context of functors from spectra to spectra.
We now turn to more explicit descriptions of the maps θr,n and θ(n1,...,nr) of Corollary 5.4 for certain

functors F : Spfin → Sp.

2-excisive functors. A 2-excisive functor F : Spfin → Sp is determined by a 2-term symmetric
sequence A1, A2 and a single map

θ1,2 = θ(2) : A1 → hocolim
L→∞

[(SL(2−1) ∧A2)hΣ2 ].

The Σ2-spectrum

SL(2−1) := Map(SL, (SL)∧2)

is equivariantly equivalent to the suspension spectrum of the based space SL with Σ2-action given
by reflection in each of the L coordinates. This action is free away from a copy of S0. We therefore
have a commutative diagram

(S0 ∧A2)hΣ2 (SL ∧A2)hΣ2 (SL/S0 ∧A2)hΣ2

(S0 ∧A2)hΣ2 (SL ∧A2)hΣ2 (SL/S0 ∧A2)hΣ2

��

//

��

//

��

∼

// //

in which the vertical maps are the standard norm maps and the rows are cofibration sequences. It
follows that the left-hand square is a homotopy pushout square. Now taking the homotopy colimit
as L→∞ we get a homotopy pushout square

(A2)hΣ2
∗

(A2)hΣ2 hocolim
L→∞

(SL ∧A2)hΣ2

//

�� ��

//

which implies that the target of the map θ1,2 is equivalent to the Tate spectrum TateΣ2(A2). Thus,

the homotopy theory of 2-excisive functors F : Spfin → Sp is equivalent to that of triples (A1, A2, θ)
where A2 has a Σ2-action and θ is any map

θ : A1 → TateΣ2(A2).
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3-excisive functors. A 3-excisive functor F : Spfin → Sp is determined by a 3-term symmetric
sequence A1, A2, A3, together with a map θ(2) as above, a map

θ(3) : A1 → hocolim
L→∞

[
(A3 ∧ SL(3−1))hΣ3

]
,

and a map

θ(1,2) : A2 → hocolim
L→∞

[(
A3 ∧ SL(3−2)

)hΣ1×Σ2
]
.

By the same analysis as for θ(2), the target of θ(1,2) is equivalent to the Tate spectrum TateΣ1×Σ2(A3).

A similar analysis for θ(3) implies that its target is equivalent to the Tate spectrum TateΣ3(L3∧A3)

where L3 is the subspace of S2 on which Σ3 fails to acts freely. (This space L3 is the union of
three semi-circles glued at their endpoints. It is non-equivariantly equivalent to a wedge of two
1-spheres.)

These maps must make the following square commute up to homotopy

A1 TateΣ2(A2)

TateΣ3(L3 ∧A3) TateΣ2(TateΣ1×Σ2(A3)× TateΣ2×Σ1(A3))

//

�� ��

//

but the bottom-right corner is trivial since Σ2 permutes the two terms in K2(A3). There is therefore
no compatibility condition required of the three maps.

We conclude then that there is an equivalence between the homotopy theory of 3-excisive functors
F : Spfin → Sp and that of 3-truncated symmetric sequences A together with maps

θ(2) :A1 → TateΣ2(A2)

θ(3) :A1 → TateΣ3(L3 ∧A3)

θ(1,2) :A2 → TateΣ2(A3).

Representable functors. For X ∈ Spfin, the derivatives of Σ∞HomSp(X,−) have a K-coalgebra
structure that encodes the Taylor tower of this functor. This structure consists of maps

θr,n : D(X∧r)→ hocolim
L→∞

(∏
n�r

SL(n−r) ∧ D(X∧n)

)hΣn


If we set X = DY , the Spanier-Whitehead dual of a finite spectrum Y , then these maps take the
form

(5.17) θr,n : Y ∧r → hocolim
L→∞

(∏
n�r

SL(n−r) ∧ Y ∧n
)hΣn

 .
In particular, taking r = 1 we get maps

θ1,n : Y → hocolim
L→∞

[(
SL(n−1) ∧ Y ∧n

)hΣn
]

These can be thought of as generalized diagonal maps that exists for any finite spectrum Y .
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The functor Σ∞Ω∞. The functor Σ∞Ω∞ : Sp→ Sp is a special case of the representable functor in
the previous section in the case Y = S0. Thus the K-coalgebra structure maps for the derivatives
of Σ∞Ω∞ take the form

(5.18) θ(n1,...,nr) : S0 → hocolim
L→∞

[
(SL(n−r))hΣn1×···×Σnr

]
.

We can then identify these maps as follows.

Lemma 5.19. The map θ(n1,...,nr) associated to the K-coalgebra structure on ∂∗(Σ
∞Ω∞) is deter-

mined by the map

S0 → Map((BΣn1 × · · · ×BΣnr)+, S
0) = (S0)hΣn1×···×Σnr

dual to the collapse map
BΣn1 × · · · ×BΣnr → ∗

followed by the inclusion of (S0)hΣn1×···×Σnr as the L = 0 term in the homotopy colimit (5.18).

Proof. The map θr,n is given by applying ∂r to the map ηn of Proposition 5.14 associated to Σ∞Ω∞.
In this case, ηn is the map

Σ∞Ω∞X → (X∧n)hΣn

that is adjoint to the diagonal on the space Ω∞X. Taking the rth cross-effect of this we get

(Σ∞Ω∞X1) ∧ . . . ∧ (Σ∞Ω∞Xr)→

[∏
n�r

Xn1
1 ∧ . . . ∧X

nr
r

]hΣn

adjoint to the diagonals on the spaces Ω∞Xj . To get θr,n we now multilinearize and evaluate at
(S0, . . . , S0). But Σ∞Ω∞ splits off the linear part on the suspension spectrum S0 and so θr,n factors
via the cross-effect itself evaluated at (S0, . . . , S0) that is, via the composite

S0 = (S0)∧r → (Σ∞Ω∞S0)∧r →

[∏
n�r

S0

]hΣn

followed by the inclusion of the right-hand side as the L = 0 term in the homotopy colimit (5.18).
In the above composite the first map is the inclusion of S in Σ∞Ω∞S0 and the second is adjoint
to the diagonal on Ω∞S0. The composite is the natural map into the homotopy fixed points which
is dual to the collapse map as claimed. �

Functors with split Taylor tower. We say that the Taylor tower of a functor F : Spfin → Sp splits
if, for every n, we have

Pn(F ) '
n∏
j=1

Dj(F ).

Since the comonad K preserves finite products, the K-coalgebra structure on the product functor
on the right-hand side is just the product of the K-coalgebra structures on the individual functors
Dj(F ). Since Dj(F ) is homogeneous, this K-coalgebra structure is trivial. We can therefore express
the splitting condition in the following way.

Proposition 5.20. The Taylor tower of F : Spfin → Sp splits if and only if, for every n, the
K-coalgebra structure on ∂≤nF is equivalent (in the homotopy category of derived K-coalgebras) to
the trivial K-coalgebra structure in which

θr,n : ∂rF → Kr∂nF

is the trivial map for all r < n.
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Proof. This follows from Theorem 3.19. �

It should be noted that this condition is more subtle that just asking each map θr,n to be nullho-
motopic though it certainly implies that fact. The nullhomotopies have to be coherent up to higher
nullhomotopies. We do, however, recover a well known sufficient condition for the Taylor tower of
F to split.

Proposition 5.21. Let F : Spfin → Sp be a pointed simplicial functor with the property that, for
each n, ∂nF can be built from finitely many free Σn-cells. Then the Taylor tower of F splits.

Proof. This and more general splitting results were studied by Chaoha in [5] based on work of
McCarthy [19], but it follows from our work in the following way.

The condition on F implies that Kr∂nF ' ∗ for all r < n, so the counit map ε : K(∂≤nF )→ ∂≤nF
is an equivalence. Therefore in the cobar construction for recovering PnF we have an equivalence

PnF −̃→ Tot(Φ∂≤nF )

where the right-hand side is a constant cosimplicial object. The totalization of this is just equivalent
again to

(Φ∂≤nF )(X) '
n∏
j=1

(∂jF ∧X∧j)hΣj

which by the freeness of each ∂jF is equivalent to

n∏
j=1

(∂jF ∧X∧j)hΣj =
n∏
j=1

DjF (X).

�

6. Functors from based spaces to spectra

We now turn to the analysis of the Taylor towers of functors F : Topfin
∗ → Sp. We have a similar

aim as in Section 5, that is, to give a better description of what a K-coalgebra structure amounts
to in this case, at least up to homotopy.

Recall that the derivatives of such a functor F possess the structure of a right module over the
operad ∂∗I formed by the derivatives of the identity functor on Top∗. We show here that the
K-coalgebra structure on those coefficients includes and extends that module structure.

In this section, then, K denotes the comonad on the category of symmetric sequences associated
to the adjunction

∂∗ : [Topfin
∗ , Sp] � [Σ,Sp] : Φ

of Proposition 4.5. Our calculation of this comonad is given by the following result which we prove
starting with 6.13 later in this section.

Proposition 6.1. In the classification of Taylor towers of functors F : Topfin
∗ → Sp, we have the

following calculation. For a Σn-spectrum An, there are natural Σr-equivalences

KrAn '

[∏
n�r

Map(∂n1I ∧ . . . ∧ ∂nrI, An)

]
hΣn
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where the product is taken over the set of surjections α : n � r and we are writing ni := |α−1(i)|
with the dependence on α understood.

Remark 6.2. Note the similarities between the above formula and the corresponding calculation
for functors from spectra to spectra in Proposition 5.2. As in that case, our formula breaks up into
a product indexed by ordered partitions n = n1 + · · ·+ nr of n into a sum of positive integers:

KrAn '
∏

n=n1+···+nr

[Map(∂n1I ∧ . . . ∧ ∂nrI, An)]hΣn1×···×Σnr
.

Definition 6.3. It follows from Proposition 6.1 that the K-coalgebra structure on the derivatives
of a pointed simplicial functor F : Topfin

∗ → Sp takes the form of a Σr-equivariant map

θr,n : ∂rF →

[∏
n�r

Map(∂n1I ∧ . . . ∧ ∂nrI, ∂nF )

]
hΣn

.

for each pair of positive integers r < n.

On the other hand, the right ∂∗I-module structure on ∂∗F can be encoded by Σr-equivariant maps

ψr,n : ∂rF →

[∏
n�r

Map(∂n1I ∧ . . . ∧ ∂nrI, ∂nF )

]hΣn

.

These are adjoint to the usual right module structure maps ∂rF ∧ ∂n1I ∧ . . . ∧ ∂nrI → ∂nF .

The following result expresses the connection between the maps θr,n and ψr,n. Again the proof is
given later in the section.

Proposition 6.4. For a pointed simplicial functor F : Topfin
∗ → Sp, there is a commutative diagram

(in the stable homotopy category) [∏
n�r

Map(∂n1I ∧ . . . ∧ ∂nrI, ∂nF )

]
hΣn

∂rF

[∏
n�r

Map(∂n1I ∧ . . . ∧ ∂nrI, ∂nF )

]hΣn

��

N

::

θr,n

//

ψr,n

where the vertical map N is the norm map from homotopy orbits to homotopy fixed points. (See
Greenlees-May [14].)

Remark 6.5. Thus we can think of a K-coalgebra in this case as consisting of a right ∂∗I-module
together with (compatible) lifts up the norm map. The situation is analogous (but dual) to the
relationship between divided power algebras and ordinary commutative algebras, in which the
divided power structure can be expressed as an extension along the norm map. (See, for example,
Fresse [10].) We can therefore view the structure of a K-coalgebra as providing a rigid notion of
divided power right ∂∗I-module. Further justification for this is given by Proposition 6.8 where
we show that the comonad structure map for K is determined (at least up to homotopy) by the
operad composition map for ∂∗I. The main conclusion of this section can now be expressed as
saying that n-excisive functors from based spaces to spectra are classified by the divided power
right ∂∗I-module structure on their derivatives.
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Let us turn then to an explicit description of the comonad structure on the functor K with respect
to the equivalences of Proposition 6.1. To state our answer, it is convenient to give a formula for
iterates of K. For this we need some new notation.

Definition 6.6. For integers r0 < r1 < · · · < rt we put an equivalence relation on the set of
sequences of surjections

rt � rt−1 � . . .� r0.

We say that two such sequences (αt, . . . , α1) and (βt, . . . , β1) are equivalent if they fit into a com-
mutative diagram

rt−1 . . . r1

rt r0

rt−1 . . . r1

//
αt−1

��

∼=

//
α2

��

∼=
$$

α1
::

αt

$$βt
//

βt−1

//

β2

::

β1

where the vertical maps are bijections. We write

[rt � . . .� r0]

for the set of equivalence classes of such sequences. In the case t = 1 notice that [n� r] is just the
set of surjections α : n� r as previously.

Proposition 6.7. For a Σn-spectrum An, and integers r = r0 < r1 < · · · < rt = n, we have

Kr0Kr1 . . .Krt−1An '

 ∏
[rt�...�r0]

Map

(
t∧
i=1

(∂ri1I ∧ . . . ∧ ∂riri I), An

)
hΣn

where the product is taken over equivalence classes of sequences (αt, . . . , α1) as in Definition 6.6,
and we are writing

rij := |α−1
i (j)|.

Note that these numbers are, up to reordering, independent of the representative chosen for the
equivalence class. In particular

KrKsAn '

 ∏
[n�s�r]

Map(∂s1I ∧ . . . ∧ ∂srI ∧ ∂n1I ∧ . . . ∧ ∂nsI, An)


hΣn

where the product is over equivalence classes of pairs of surjections

n //
β
s //

γ
r

and we are writing ni := |β−1(i)| and sj := |γ−1(j)|.

Proof. This follows by iterating the formula given in Proposition 6.1, and using the fact that Σs

acts freely on the set of surjections n� s (and that homotopy colimits commute). �

Proposition 6.8. With respect to the equivalences of 6.1 and 6.7, the comultiplication map

δr,s : KrAn → KrKsAn

associated to the comonad K, takes the form[∏
n�r

Map(∂n′1I ∧ . . . ∧ ∂n′rI, An)

]
hΣn

 ∏
[n�s�r]

Map(∂s1I ∧ . . . ∧ ∂n1I ∧ . . . , An)


hΣn

//
δr,s
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where n′i := |α−1(i)|. This map is given by applying Σn-homotopy orbits to a map between the
products constructed in the following way. We can compose a sequence of surjections

n� s� r

to get a single surjection n� r and this composite is the same for all representatives of an element
in [n� s� r]. Associated to this composition are operad composition maps

∂sjI ∧ ∂ns1+···+sj−1+1I ∧ . . . ∧ ∂ns1+···+sj I → ∂n′jI

which yield the required map δr,s.

Before turning to the proofs, we show that the relationship between K-coalgebras and right ∂∗I-
module can be described in terms of a map of comonads that is given, up to homotopy, by the
norm maps of Proposition 6.4.

Definition 6.9. We can define a comonad K ′ on the category of symmetric sequences whose
coalgebras are precisely the right ∂∗I-modules. On the symmetric sequence A, K ′ is given by

K ′(A)r :=
∏
n

[∏
n�r

Map(∂n1I ∧ . . . ∧ ∂nrI, An)

]Σn

.

This functor is right adjoint to the free right ∂∗I-module monad and so for formal reasons inherits
a comonad structure whose coalgebras are the right ∂∗I-modules. The K ′-coalgebra structure on
∂∗F is a map of symmetric sequences ∂∗F → K ′(∂∗F ) that is captured exactly by the maps ψr,n
of Definition 6.3. (We use a cofibrant model for ∂∗I so that the strict fixed points in the definition
of K ′ are equivalent to the homotopy fixed points.)

Now the comonad K = ∂∗Φ takes values in right ∂∗I-modules (because ∂∗ does). This gives us a
map

K → K ′K

and composing with the counit for K we get a natural transformation

ν : K → K ′.

Notice that K ′ commutes with products so that it is determined by constructions K ′rAn for r < n
analogous to those of Definition 4.7 for K. Then ν restricts to maps νr : KrAn → K ′rAn.

Lemma 6.10. The map ν : K → K ′ is a morphism of comonads and the right ∂∗I-module structure
on a K-coalgebra A is encoded in the composite map

A→ KA //ν K ′A.

Proof. This is a diagram chase using the naturality of the K ′-coalgebra structure on the values of
K. �

Proposition 6.11. With respect to the equivalence of Proposition 6.1, the map

νr : KrAn → K ′rAn

is given, in the homotopy category, by the norm maps

N :

[∏
n�r

Map(∂n1I ∧ . . . ∧ ∂nrI, An)

]
hΣn

→

[∏
n�r

Map(∂n1I ∧ . . . ∧ ∂nrI, An)

]hΣn

that appear in Proposition 6.4.
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Proof. We apply Proposition 6.4 to the functor F = ΦAn. This tells us that the K ′-coalgebra
structure on KAn is given, up to homotopy, by the composite

KAn → KKAn → K ′KAn

where the first map is the K-coalgebra structure on KAn (i.e. the comonad structure map for K)
followed by the norm map N . By definition then, ν is given by following the above composite with
the counit for K. This gives the composite

KAn → KKAn → K ′KAn → K ′An.

Now Proposition 6.8 tells us what the first map is (up to homotopy), the second map is N and the
third is projection on to the terms with s = n. That is, we get[ ∏

α:n�r

Map(∂n′1I ∧ . . . ∧ ∂n′rI, An)

]
hΣn

//
δr,s

 ∏
[n�s�r]

Map(∂s1I ∧ . . . ∧ ∂n1I ∧ . . . ∧ ∂nsI, An)


hΣn

//N

 ∏
[n�s�r]

Map(∂s1I ∧ . . . ∧ ∂n1I ∧ . . . ∧ ∂nsI, An)

hΣn

//

[ ∏
α:n�r

Map(∂n′1I ∧ . . . ∧ ∂n′rI, An)

]hΣn

By naturality of N , this composite is just the norm map N as claimed. �

We now turn to the proofs of Propositions 6.1, 6.4 and 6.8. The first step is to understand the
derivatives of the representable functors Σ∞HomTop∗(X,−) for X ∈ Topfin

∗ . These were calculated
by the first author in [1]. The right ∂∗I-module structure was calculated in [2]. We recall both
descriptions here.

Definition 6.12. For X ∈ Topfin
∗ we have the fat diagonal ∆nX ⊆ X∧n consisting of n-tuples

(x1, . . . , xn) of points in X with some xi = xj for i 6= j. In [1], the first author showed that

∂n(Σ∞HomTop∗(X,−)) ' D(X∧n/∆nX)

where D denotes the Spanier-Whitehead dual.

Definition 6.13. To describe the ∂∗I-module structure on these derivatives, we recall some facts
about operadic bar constructions. For X ∈ Topfin

∗ , the symmetric sequence Σ∞X∧∗ forms a right
module over the commutative operad Com. (This is the operad of spectra all of whose terms are
the sphere spectrum.) By [6], the one-sided bar construction

B(Σ∞X∧∗,Com, 1)

has the structure of a right comodule over the cooperad B(1,Com, 1). Applying Spanier-Whitehead
duality, we get a right module

DB(X∧∗,Com, 1)

over the operad DB(1,Com, 1). The terms of this operad are equivalent to the derivatives of the
identity functor on based spaces.

Here we write ∂∗I for a cofibrant model of the operad DB(1,Com, 1) (in the projective model
structure), and M(X) for a cofibrant replacement of DB(X∧∗,Com, 1) in the projective model
structure on right ∂∗I-modules. In fact, we choose M(−) to be a cofibrant object in the category
of simplicially-enriched functors from (Topfin

∗ )op to right ∂∗I-modules (with its projective model
structure).
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Lemma 6.14. For X ∈ Topfin
∗ , the right ∂∗I-module M(X) is equivalent to the right ∂∗I-module

formed by the derivatives of the representable functor Σ∞HomTop∗(X,−).

Proof. This calculation is done in [2, 4.2.28]. Note that it relies on a Σn-equivariant equivalence

B(Σ∞X∧∗,Com, 1)n ' Σ∞X∧n/∆nX

which we use later in this section. �

We now follow the usual pattern to construct the required adjunction (∂∗,Φ) from our choice of
derivatives for the representable functors.

Definition 6.15. We define

∂∗ : [Topfin
∗ , Sp]→ [Σ,Sp]

by

∂∗F := M(X) ∧X∈Topfin
∗
F (X)

and its right adjoint

Φ : [Σ,Sp]→ [Topfin
∗ ,Sp]

is then given by

Φ(A) : X 7→ MapΣ(M(X), A) =
∏
n

Map(M(X)n, An)Σn .

Corollary 6.16. The right adjoint Φ : [Σ, Sp]→ [Topfin
∗ , Sp] satisfies

Φ(A)(X) '
∏
n

(An ∧X∧n/∆nX)hΣn

where ∆nX denotes the fat diagonal inside X∧n.

Proof. This follows from the equivalence mentioned in the proof of Lemma 6.14. �

Remark 6.17. The category of right ∂∗I-modules is enriched, tensored and cotensored over Sp with
the tensoring given by termwise smash product. Since colimits are also calculated at the symmetric
sequence level, it follows that ∂∗F , as defined above, inherits a right ∂∗I-module structure from
that on M(X). This is equivalent to the right ∂∗I-module structure constructed in [2] because that
construction preserves homotopy colimits.

The pieces of the comonad K can now be identified as the spectra

KrAn := M(X)r ∧X∈Topfin
∗

Map(M(X)n, An)Σn

and since M(X)n is a cofibrant Σn-spectrum, the fixed points here are equivalent to the homotopy
fixed points.
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Our next step is to use the above expression for KrAn to prove Proposition 6.1. The required
equivalence arises from the following commutative diagram:

(6.18)

M(X)r ∧X [Map(M(X)n, An)hΣn ]

[ ∏
α:n�r

Map(∂n1I ∧ . . . ∧ ∂nrI, An)

]
hΣn

M(X)r ∧X [Map(M(X)n, An)hΣn ]

[ ∏
α:n�r

Map(∂n1I ∧ . . . ∧ ∂nrI, An)

]hΣn

//m
∼

��

N ∼

��

N

//m

The maps marked N are the norm maps from homotopy orbits to homotopy fixed points and those
marked m are determined by the composite

M(X)r ∧Map(M(X)n, An)→M(X)r ∧Map(M(X)r ∧ ∂n1I ∧ . . . ∧ ∂nrI, An)

→ Map(∂n1I ∧ . . . ∧ ∂nrI, An)
(6.19)

where the first map is the right module composition map associated to a surjection α : n� r and
the second is the canonical evaluation map.

Proposition 6.1 follows from the claim that the top and left-hand maps in diagram (6.18) are
equivalences. We prove these facts now.

Lemma 6.20. For any Σn-spectrum An and X ∈ Topfin
∗ , the norm map

N : Map(M(X)n, An)hΣn → Map(M(X)n, An)hΣn

is a weak equivalence.

Proof. By the equivalence of M(X)n ' D(Xn/∆nX) and the finiteness of X, this map can be
rewritten as

N : (An ∧X∧n/∆nX)hΣn → (An ∧X∧n/∆nX)hΣn

But X∧n/∆nX is a finite free cell-Σn-space in the sense that it is built from finitely many free
Σn-cells. It follows that the norm map N above is an equivalence as claimed. �

Notation 6.21. To analyze the top horizontal map m in (6.18) we introduce the following notation.
We write

Tn := B(1,Com, 1)n.

This is the suspension spectrum of the nth partition poset complex. Recall that the symmetric
sequence T∗ forms a cooperad whose Spanier-Whitehead dual is ∂∗I, and that we have a comodule
structure map

B(Σ∞X∧∗,Com, 1)n → B(Σ∞X∧∗,Com, 1)r ∧ Tn1 ∧ . . . ∧ Tnr
for each surjection n� r. These maps define the right ∂∗I-module structure on M(X).

Lemma 6.22. The map

B(Σ∞X∧∗,Com, 1)n →

[∏
n�r

B(Σ∞X∧∗,Com, 1)r ∧ Tn1 ∧ . . . ∧ Tnr

]hΣr

induced by the comodule structure maps, determines an equivalence of rth derivatives.
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Proof. Since taking derivatives commutes with the various colimit operations performed (and since
Σr is acting freely on the product here), the result can be reduced to the claim that the map

B(∂r(Σ
∞X∧∗),Com, 1)n →

[∏
n�r

B(∂r(Σ
∞X∧∗),Com, 1)r ∧ Tn1 ∧ . . . ∧ Tnr

]hΣr

is an equivalence. But the right Com-module ∂r(Σ
∞X∧∗) is trivial and concentrated in degree r

where it equals Σ∞(Σr)+. The claim then follows by a straightforward calculation with the bar
construction. �

Lemma 6.23. There is a Σr-equivariant equivalence

ε : M(X)r ∧X∈Topfin
∗
B(X∧∗,Com, 1)r −̃→

∏
Σr

S

where the target has the regular Σr-action. The component corresponding to the identity element
in Σr is made up of the canonical evaluation maps

DB(X∧∗,Com, 1)r ∧B(X∧∗,Com, 1)r → S.

Proof. Let [r] denote the finite pointed set {0, 1, . . . , r} viewed as an object of Topfin
∗ . Our strategy

is to construct an equivalence

φ : M([r])r −̃→M(X)r ∧X∈Topfin
∗
B(X∧∗,Com, 1)r

and show that the composite εφ is an equivalence M([r])r −̃→
∏

Σr
S.

First note that since the bar construction preserves colimits in its right module variable, so the
target of φ is isomorphic to

B(M(X)r ∧X X∧∗,Com, 1)r.

Here M(X)r ∧X X∧∗ inherits a right Com-module structure from that on X∧∗. Notice also that to
calculate the rth term in the bar construction we only care about the r-truncated part of this right
Com-module.

We now observe that the smash product X∧s can be written (as a colimit of representable functors)
as:

X∧s ∼= tcof
J⊆[s]

Hom(J+, X).

The right-hand side is the total cofibre of an s-dimensional cube whose morphisms are given by
extending functions to the basepoint in X. It follows by an enriched dual Yoneda Lemma that

M(X)r ∧X X∧s ∼= tcof
J⊆[s]

M(J+)r.

The key observation is now that
M(J+)r ' ∗ if |J | < r.

(To see this recall that M(X)r is equivalent to the dual of X∧r/∆rX which is the set of configu-
rations of r points in J (plus a disjoint basepoint) when X is the finite set J+. There are no such
configurations when |J | < r.)

It follows that there is a natural equivalence of r-truncated right Com-modules

M([r])r −̃→M(X)r ∧X X∧∗

where the source here is considered to be an r-truncated symmetric sequence that is trivial except
in the rth term. Applying the bar construction to this we get an equivalence

B(M([r])r,Com, 1)r −̃→ B(M(X)r ∧X X∧∗,Com, 1)r
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but the left-hand side is again just isomorphic to M([r])r.

Altogether then we have constructed an equivalence

φ : M([r])r −̃→M(X)r ∧X B(X∧∗,Com, 1)r.

The map φ can also be expressed as the composite

M([r])r →M([r])r ∧B([r]∧∗,Com, 1)r →M(X)r ∧X B(X∧∗,Com, 1)r

where the first map is inclusion via the identity map on {1, . . . , r} viewed as a point e in [r]∧r

included in the 0-simplices of the bar construction, and the second is the natural map into the
coend.

It remains to analyze the composite of φ with ε:

M([r])r →
∏
Σr

S.

But this composite is precisely the composite

M([r])r −̃→ DB([r]∧∗,Com, 1)r −̃→ D([r]∧r/∆r[r]) ∼=
∏
Σr

S

so is an equivalence. �

The heavy lifting is now done and we can complete the proofs of our main results.

Proof of 6.1. Lemmas 6.22 and 6.23 together imply that the map top horizontal map in (6.18) is
a weak equivalence. Lemma 6.20 implies that the left-hand vertical map in that diagram is an
equivalence. Together these yield the claimed formula. �

Proof of 6.4. We have just seen that the equivalence of Proposition 6.1 is based on the diagram in
(6.18). Consider now the following diagram for some fixed surjection n� r.

M(X)r ∧X FX M(X)r ∧X Map(M(X)n,M(Y )n ∧Y FY )

M(X)r ∧X Map(M(X)r,M(Y )r ∧Y FY ) M(X)r ∧X Map(M(X)r ∧ ∂n1I ∧ . . . ,M(Y )n ∧Y FY )

M(Y )r ∧Y FY Map(∂n1I ∧ . . . ∧ ∂nrI,M(Y )n ∧Y FY )

//

�� ��

//

�� ��

//

where

• the top horizontal and top-left vertical maps are the unit of the (∂∗,Φ)-adjunction;
• the top-right vertical and middle/bottom horizontal maps are the ∂∗I-module structure on
M(X) and M(Y ) respectively;
• the bottom-left and bottom-right vertical maps are canonical evaluations.
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The top square commutes because a map X → Y of spaces induces a map M(X)→M(Y ) of right
∂∗I-modules, and the bottom square commutes by naturality of the maps involved.

The composite N ◦θr,n appearing in the statement of Proposition 6.4 is essentially the composite of
the top and right-hand maps. (Strictly speaking, to get N ◦ θr,n we consider all surjections n � r
and map into the Σn-homotopy fixed points of the product over these.) On the other hand the
composite of the left-hand maps is the identity (by a triangle identity for the (∂∗,Φ) adjunction),
and the bottom map is the definition of the right ∂∗I-module structure on ∂∗F . The commutativity
of this diagram thus implies the Proposition. �

Proof of 6.8. The comonad structure map δr,s is exactly the map θr,s associated to the functor
F (X) = Map(M(X)n, An)Σn . By naturality this is given by applying the Σn-homotopy orbits
to the map θr,s associated to Map(M(X)n, An). The proof of Proposition 6.1 shows us that the
derivatives of this functor are given by

(6.24) ∂s Map(M(X)n, An) '
∏
n�s

Map(∂n1I ∧ . . . ∧ ∂nsI, An)

and Σs acts freely on this. The norm map in Proposition 6.4 is therefore an equivalence and so
the map θr,s for this functor is given by the right ∂∗I-module structure on these derivatives. Now
recall that the equivalence (6.24) is built from the maps m of (6.19). From this it follows that the
right ∂∗I-module structure on these derivatives is determined by the operad structure on ∂∗I in
the claimed manner. �

We now turn to calculations of the K-coalgebra structure maps θr,n for specific functors F : Topfin
∗ →

Sp.

2-excisive functors. A 2-excisive pointed simplicial functor F : Topfin
∗ → Sp is determined by a

2-term symmetric sequence A1, A2 together with a single map of spectra

θ1,2 : A1 → (T2 ∧A2)hΣ2 = (ΣA2)hΣ2

where Σ2 acts trivially on the suspension coordinate and Tn denotes the nth partition poset complex.
According to Proposition 6.4, θ1,2 is determined by a right ∂∗I-module structure map

A1 ∧ ∂2I → A2

together with a nullhomotopy of the composite

A1 → Map(∂2I, A2)hΣ2 → TateΣ2 Map(∂2I, A2) = TateΣ2(ΣA2)

that yields a lift up the norm map.

Notice that this structure map can also be recovered directly form the fibre sequence

D2F → P2F → P1F.

Delooping this we see that P2F is the fibre of a map

(A1 ∧X) = P1F → ΣD2F = (ΣA2 ∧X∧2)hΣ2 .

Evaluating at X = S0 we get the map θ1,2.
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3-excisive functors. A 3-excisive pointed simplicial functor F : Topfin
∗ → Sp is determined by a

3-term symmetric sequence A1, A2, A3, the map θ1,2 described above, and two further maps

θ2,3 : A2 →

∏
3�2

T1 ∧ T2 ∧A3


hΣ3

and
θ1,3 : A1 → (T3 ∧A3)hΣ3 .

These maps make the following diagram commute

A1 (T2 ∧A2)hΣ2

(T3 ∧A3)hΣ3

 ∏
[3�2�1]

T2 ∧ T1 ∧ T2 ∧A3


hΣ3

//
θ1,2

��

θ1,3
��

θ2,3

//
δ2,3

where the bottom horizontal map is given by the cooperad structure maps T3 → T2 ∧ T1 ∧ T2.

Representable functors. For X ∈ Topfin
∗ , the derivatives of the functor Σ∞HomTop∗(X,−) are given

by the right ∂∗I-module

M(X) ' DB(X∧∗,Com, 1) ' DX∧∗/∆∗X.
By Proposition 6.4 the K-coalgebra structure on these coefficients is a lift up the norm map of this
right ∂∗I-module structure. In this case, however, the norm map[∏

n�r

Map(∂n1I ∧ . . . ∧ ∂nrI,M(X)n)

]
hΣn

//N

[∏
n�r

Map(∂n1I ∧ . . . ∧ ∂nrI,M(X)n)

]hΣn

is an equivalence by a similar argument to that of Lemma 6.20. The K-coalgebra structure is
therefore completely determined by the right ∂∗I-module structure on M(X).

Functors of the form FΣ∞. A pointed simplicial functor F : Spfin → Sp determines a pointed
simplicial functor Topfin

∗ → Sp by precomposing with Σ∞. The functor FΣ∞ has the same deriva-
tives as F . The symmetric sequence ∂∗F ' ∂∗(FΣ∞) therefore has actions by both the comonads
described in this and the previous section. To avoid confusion we denote these here by KTop∗ and
KSp respectively.

Example 6.25. (First observed by Bill Dwyer) For any finite spectrum Y , we described in (5.17)
the KSp-coalgebra structure on the derivatives of the functor

Σ∞Ω∞(Y ∧ −) ' Σ∞HomSp(DY,−).

Considering this now as a functor Topfin
∗ → Sp, these derivatives inherit a KTop∗-coalgebra structure.

This coalgebra structure consists of maps

θr,n : Y ∧r → Map(∂n1I ∧ . . . ∧ ∂nrI, Y ∧n)hΣn1×···×...Σnr .

and so, in particular, we have

θ1,n : Y → Map(∂nI, Y
∧n)hΣn .

Comparing with the terminology of Remark 6.5, we can refer to this structure as making any finite
spectrum Y into a divided power right ∂∗I-coalgebra.
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Functors with vanishing Tate data. Suppose G is a functor whose derivatives have the following
property: the Σn-spectrum ∂nG can be built from finitely many free Σn-cells. It follows that
the norm maps of Proposition 6.4 are equivalences and so the K-coalgebra structure on ∂∗G is
determined by the right ∂∗I-module structure. The Taylor tower is thus also determined by this
information. The following theorem gives an explicit expression for PnG in terms of the right
∂∗I-module ∂∗G.

Theorem 6.26. Let Map∂∗I(−,−) denote the derived mapping spectrum for right ∂∗I-modules.

Suppose G : Topfin
∗ → Sp is a pointed simplicial functor such that ∂nG can be built from finitely

many free Σn-cells. Then

PnG(X) ' Map∂∗I(M(X), ∂≤nG)

with the maps in the Taylor tower given by the sequence of truncation maps

· · · → ∂≤nG→ ∂≤(n−1)G→ . . . .

Moreover, if the Taylor tower of G converges, then there is an equivalence of spectra

NatX∈Topfin
∗

(F,G) ' Map∂∗I(∂∗F, ∂∗G).

The left-hand side is the spectrum of natural transformations for two functors Topfin
∗ → Sp.

Remark 6.27. Proposition 5.21 and Theorem 6.26 are examples of a general phenomenon: if G is
a functor whose derivatives have vanishing Tate homology, then the Taylor tower of G is determined
by the ∂∗I-module structure on ∂∗G. This observation also applies to space-valued functors and
we intend to develop this remark in another paper.

Example 6.28. For any Y ∈ Topfin
∗ , the representable functor G = Σ∞RY satisfies the hypothesis

of Theorem 6.26. It follows that

Pn(Σ∞HomTop∗(Y,−))(X) ' Map∂∗I(M(X),M(Y )≤n)

and, if the connectivity of X is larger than the dimension of Y :

Σ∞HomTop∗(Y,X) ' Map∂∗I(M(X),M(Y )).

This description of the Taylor tower of the stable mapping functors is Koszul dual to that given in
[1] in which the stages of this tower are described as mapping objects for the right Com-modules
X∧∗.

Proof of 6.26. Recall the comonad K ′ of Definition 6.9 whose coalgebras are precisely the right
∂∗I-modules. The derived mapping spectrum Map∂∗I(M(X), ∂≤nG) can then by calculated as the
derived mapping spectrum of K ′-coalgebras, namely

M̃apK′(M(X), ∂≤nG)

in the sense of 1.10 (but a spectrum not just a simplicial set because K ′ is enriched over spectra).

It is now sufficient to construct a levelwise equivalence of cosimplicial spectra

ΦK•∂≤nG→ MapΣ(M(X), (K ′)•∂≤nG)

since the corresponding totalization will then be the required equivalence

PnG→ Map∂∗I(M(X), ∂≤nG)

by Corollary 3.16.
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Since the right adjoint Φ is given by MapΣ(M(X),−), it is sufficient to show that the given
condition on ∂∗G implies that, for each s ≥ 1, the comonad map ν : K → K ′ of Definition 6.9
induces equivalences

Ks∂≤nG→ (K ′)s∂≤nG.

We first show that if the bounded symmetric sequence A has each term An built from finitely many
free Σn-cells, then the same is true of the symmetric sequence K(A). We have a Σn×Σr-equivariant
equivalence ∏

n�r

Map(∂n1I ∧ . . . ∧ ∂nrI, An) '

(∨
n�r

Tn1 ∧ . . . ∧ Tnr

)
∧An.

The right-hand side here can be built from finitely many free Σn×Σr-cells because An can be built
from finitely many free Σn-cells and the wedge can be built from finitely many free Σr-cells. Taking
Σn homotopy orbits and using the fact that A is truncated, we see that K(A)r can be built from
finitely many free Σr-cells as required.

Now we observe that if A has the finiteness property above, then the map

ν : K(A)→ K ′(A)

is a weak equivalence. Again, this follows from the fact that∏
n�r

Map(∂n1I ∧ . . . ∧ ∂nrI, An)

can be built from finitely many free Σn-cells. Therefore the norm map for this Σn-spectrum (which
by Proposition 6.11 is equivalent to ν) is an equivalence.

It now follows by induction that the map

Ks∂≤nG→ (K ′)s∂≤nG

induced by ν is a weak equivalence for all s ≥ 1, as required. �

7. Functors with values in based spaces

We now apply the general theory of section 3 to pointed simplicial functors Cfin → Top∗, where
Top∗ is, as before, the category of based compactly-generated topological spaces, and C is either
Top∗ or Sp. As with spectrum-valued functors, our models for the derivatives are left Kan extended
from those of representable functors. The key difference is that these derivatives can be endowed
with the structure of a left module over the operad ∂∗I. The left Kan extension is performed in
the category of left ∂∗I-modules.

Definition 7.1. Let M denote the category of left ∂∗I-modules. We fix a simplicially-enriched
functor

∂∗(R•) : (Cfin)op →M
such that, for each X ∈ Cfin, ∂∗(RX) is a model for the derivatives of the representable functor
HomC(X,−) : Cfin → Top∗ together with the left module structure on those derivatives as described
in [2]. We also ensure that ∂∗(RX) is a cofibrant left ∂∗I-module for each X.

For an arbitrary pointed simplicial functor F : Cfin → Top∗ we now define

∂∗F := F (X)⊗X∈Cfin ∂∗(RX).
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This is an enriched coend over the simplicial category Cfin calculated in the category M of left
∂∗I-modules, and ⊗ denotes the tensoring of M over based spaces. We thus obtain a simplicial
functor

∂∗ : [Cfin,Top∗]→M.

Proposition 7.2. For cofibrant F ∈ [Cfin,Top∗], the left ∂∗I-module ∂∗F is equivalent, as a left
module, to the derivatives of F with the module structure defined in [2].

Proof. For the purposes of this proof, we write ∂G∗ F for the model for the derivatives of F con-
structed in [2]. We focus first on the case where F is a finite cell functor, that is a finite cell object
with respect to the generating cofibrations in [Cfin,Top∗].

From Proposition 4.3 we have an equivalence

F (X) ∧X∈Cfin ∂∗(Σ
∞RX) −̃→ ∂∗(Σ

∞F ).

Taking Spanier-Whitehead duals, we get

(7.3) ∂∗(Σ∞F ) −̃→ MapX∈Cfin(F (X), ∂∗(Σ∞RX))

where ∂∗ denotes the Spanier-Whitehead dual of the derivatives for a spectrum-valued functor. In
[2] it is shown that this is in fact an equivalence of left Com-modules where Com is the commutative
operad of spectra. The right-hand side in (7.3) involves the cotensoring of left Com-modules over
Top∗.

According to [2], the derivatives of F are given by the ‘Koszul dual’ of the left Com-module
∂∗(Σ∞F ), that is

∂G∗ (F ) := DB(1,Com, ∂∗(Σ∞F )).

Now we have a natural assembly map

f : F (X)⊗X∈Cfin ∂G∗ (RX)→ ∂G∗ (F )

and our claim is that f is a weak equivalence of left ∂∗(I)-modules. To show this, it is sufficient
by [2, 20.2] to show that it induces a weak equivalence on taking Koszul duals again. The bar
construction B(1, ∂∗(I),−) is equivalent to the left derived functor of the indecomposables of a left
∂∗(I)-module, so preserves the tensoring and coends. Thus the Koszul dual of f is equivalent to
the natural map

DB(1, ∂∗(I), ∂′∗(F ))→ MapX∈Cfin(F (X),DB(1, ∂∗(I), ∂′(RX))).

But this is equivalent, again by [2, 20.2], to the map (7.3) above, so is a weak equivalence. Thus f
is a weak equivalence.

The result for an arbitrary cell functor F now follows by taking a filtered homotopy colimit, and
for an arbitrary cofibrant functor by taking retracts. �

Definition 7.4. The right adjoint to ∂∗ : [Cfin,Top∗] → M is the simplicial functor Φ : M →
[Cfin,Top∗] given by

ΦA(X) := Hom∂∗I(∂∗(RX), A)

where Hom∂∗I(−,−) denotes the enrichment of the category M of left ∂∗I-modules over Top∗.

Proposition 7.5. The adjunction (∂∗,Φ) satisfies the condition of 3.9 withM equal to the category
of left ∂∗I-modules.

Proof. Since ∂∗(RX) is a cofibrant left ∂∗I-module, the right adjoint Φ preserves fibrations and
trivial fibrations. Therefore (∂∗,Φ) is a Quillen adjunction. �
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The general theory of Section 3 then gives us the following result.

Theorem 7.6. Let K : M → M denote the comonad ∂∗Φ on the category of left ∂∗I-modules
associated to the adjunction (∂∗,Φ). Let F : Cfin → Top∗ be a pointed simplicial functor. Then the
derivatives ∂∗F have the structure of a K-coalgebra, and the Taylor tower of F can be reconstructed
from this coalgebra by the cobar constructions of Corollary 3.16.

An analysis of the structure of the comonad K, for a given source category C, is much harder than
in the case of spectrum-valued functors. The pleasant properties of symmetric sequences, that they
are equivalent to the products of their individual terms, and that finite products are equivalent
to finite coproducts, do not apply to left ∂∗I-modules. We are therefore unable to get as explicit
descriptions of the comonad K as we did in the previous sections.

7.1. Functors from spectra to based spaces. For a finite cell spectrum X, the representable
functor

RX : Spfin → Top∗
is equivalent to the linear functor

Ω∞DX ∧ −
whose only non-trivial derivative is

∂1(RX) ' DX.
The left ∂∗I-module structure on ∂∗(RX) is of course trivial. It follows that the comonad K on the
category of left ∂∗I-modules controlling Taylor towers of functors Sp→ Top∗ is given by

K(A) = ∂∗

[
X 7→ H̃om∂∗I(DX,A)

]
where DX is a left ∂∗I-module concentrated in its first term, and H̃om denotes the derived mapping
space for left ∂∗I-modules. We can describe this derived mapping space as the totalization of a
cosimplicial space

H̃om∂∗I(DX,A) ' Tot HomΣ(∂∗I ◦ · · · ◦ ∂∗I ◦ DX,A).

In general, this is hard to calculate, but for 2-truncated A we can use this description to understand
2-excisive functors from spectra to based spaces.

2-excisive functors. Let A be a 2-truncated left ∂∗I-module. Thus A consists of spectra A1 and
A2, with a Σ2-action on A2, and a Σ2-equivariant map

m : ∂2I ∧A1 ∧A1 → A2.

In this case the cosimplicial space that calculates the derived mapping space

H̃om∂∗I(DX,A)

is degenerate above degree 2 and its totalization is equivalent to the homotopy fibre of the map

HomSp(DX,A1)→ HomSp(∂2I ∧ DX ∧ DX,A2)hΣ2

given by the diagonal map

HomSp(DX,A1)→ HomSp(DX,A1)∧2 ' HomSp(DX ∧ DX,A1 ∧A1)

followed by the canonical map that smashes source and target with ∂2I, and the module structure
map m. We can write this instead as

Ω∞(A1 ∧X)→ Ω∞(ΣA2 ∧X∧2)hΣ2

where Σ2 acts trivially on the suspension coordinate.
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We know how to calculate the derivatives of these terms from our analysis of functors from spectra
to spectra. Thus we get

K(A)2 ' A2

and K(A)1 is the homotopy fibre of the composite

A1
//δ TateΣ2(A1 ∧A1) //m

TateΣ2(ΣA2)

where δ is the generalized diagonal map θ1,2 of (5.17) for the spectrum A1, and m is induced by the
module structure map for A. The left module structure on K(A) is determined by the fact that
the counit K(A)→ A must be a map of modules.

A K-coalgebra structure on A consists of an appropriate map of left modules θ : A → KA. The
unit condition implies that the composite

A1 → K(A)1 → A1

is the identity and it follows that the composite map mδ must be nullhomotopic. Conversely,
a choice of nullhomotopy for this composite determines the required map θ. Any such map is
automatically a module map.

In conclusion, therefore, our classification of 2-excisive functors Spfin → Top∗ is as follows. Such a
functor corresponds to spectra A1, A2 and

m : A1 ∧A1 → ΣA2

as above, together with a nullhomotopy of the composite

A1
//δ TateΣ2(A1 ∧A1) //m

TateΣ2(ΣA2).

Functors of the form Ω∞F . Now consider F : Spfin → Sp. Then the derivatives ∂∗(Ω
∞F ) are

equivalent to those of F . It follows that any KSp-coalgebra (in the sense of Section 5) possesses a
canonical K-coalgebra structure (in the sense of this section).

To see this, first note that the left ∂∗I-module structure on ∂∗(Ω
∞F ) is trivial. We therefore have

H̃om∂∗I(DX, ∂∗F ) ' HomΣ(B(1, ∂∗I,DX), ∂∗F ) '
∏
n

Ω∞(∂nF ∧X∧n)hΣn .

It follows that

K(∂∗F ) ' KSp(∂∗F )

and that K(∂∗F ) also has a trivial left ∂∗I-module structure. The K-coalgebra structure map is
then given precisely by the KSp-coalgebra structure map associated to F .

7.2. Functors from based spaces to based spaces. For a finite cell complex X, the repre-
sentable functor HomTop∗(X,−) has derivatives

Map(X, ∂∗I)

with left ∂∗I-module structure given by the diagonal of X together with the operad structure on
∂∗I. (This is the cotensoring of the left ∂∗I-module ∂∗I by the space X.)

The comonad K on the category of left ∂∗I-modules that controls Taylor towers of functors Topfin
∗ →

Top∗ is therefore given by

K(A) = ∂∗

[
X 7→ H̃om∂∗I(Map(X, ∂∗I), A)

]
.
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2-excisive functors. Let A be a 2-truncated left ∂∗I-module with structure map

m : A1 ∧A1 → ΣA2.

Then the cosimplicial object that calculates

H̃om∂∗I(Map(X, ∂∗I), A)

is again degenerate above degree 2. The totalization can be identified with the homotopy pullback

Ω∞(ΣA2 ∧X)hΣ2

Ω∞(A1 ∧X) Ω∞(ΣA2 ∧X∧2)hΣ2

��

//

Here the vertical map is the diagonal on the space X, and the horizontal map is the same as that
described in Section 7.1. We deduce that

K(A)2 ' A2

and that K(A)1 is equivalent to the homotopy pullback of the diagram

ΣAhΣ2
2

A1 TateΣ2(ΣA2)
��

//

where the vertical map is the canonical map from the homotopy fixed points to the Tate construc-
tion, and the bottom map is as in Section 7.1.

A K-coalgebra structure consists of an appropriate map A → K(A). This amounts to a map

m′ : A1 → ΣAhΣ2
2 together with a homotopy between the two composites of

A1 ΣAhΣ2
2

A1 TateΣ2(ΣA2)

//m′

��

//

Note that the map m′ can be interpreted as a right ∂∗I-module structure on the symmetric sequence
A (thus making it into a ∂∗I-bimodule). This diagram thus gives a certain additional compatibility
between the right and left module structures.

Our classification of 2-excisive functors Topfin
∗ → Top∗ is therefore as follows. Such a functor

corresponds to a symmetric sequence A1, A2 together with Σ2-equivariant maps

m : A1 ∧A1 → ΣA2, m′ : A1 → ΣA2

and a homotopy between the two composites in the diagram

(7.7)

A1 ΣAhΣ2
2

TateΣ2(A1 ∧A1) TateΣ2(ΣA2).
��

δ

//m′

��

//m
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Functors of the form Ω∞F . As in Section 7.1, we can easily understand the K-coalgebra structure
on the derivatives of a functor of the form Ω∞F for F : Top∗ → Sp. For such a functor, the left
module structure on ∂∗(Ω

∞F ) is trivial and we have

K(∂∗(Ω
∞F )) ' KTop∗(∂∗F )

where KTop∗ is the comonad on symmetric sequences associated to functors Top∗ → Sp. The K-
coalgebra structure map for Ω∞F can then be identified with the KTop∗-coalgebra structure map
for F .

Functors of the form FΣ∞. Finally, consider a 2-excisive functor F : Sp→ Top∗. Then FΣ∞ is a
2-excisive functor Top∗ → Top∗ with the same derivatives as F . We saw in Section 7.1 that F is
classified by a left ∂∗I-module A with terms A1, A2 together with a nullhomotopy of the composite

A1 → TateΣ2(ΣA2).

The functor FΣ∞ is classified by this same information with the map

m′ : A1 → ΣA2

taken to be trivial (i.e. the right ∂∗I-module structure is trivial). The nullhomotopy then gives the
required homotopy between the two composites of the diagram (7.7).
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