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ERRATUM TO
“THE HOMOGENEOUS COORDINATE RING

OF A TORIC VARIETY”

DAVID A. COX

My paper “The Homogeneous Coordinate Ring of a Toric Variety” [J. Al-

gebraic Geometry 4 (1995), 17–50] has some incorrect statements before and

during the proof of Proposition 4.3. The purpose of this note is to correct

these errors and give a valid proof of the proposition. I am very grateful to

Alexander Duncan for bringing this matter to my attention.

We will use the same notation as the paper, hereinafter referred to as [2].

The major error in the paper occurs in the discussion following the statement

of Theorem 4.2 of [2], where we assert that the set Endg(S) of graded C-

algebra homomorphisms φ : S → S with φ(1) = 1 is a C-algebra. Here, S is

the homogeneous coordinate ring of the toric variety X. Nowadays S is called

the total coordinate ring (see [3]) or the Cox ring (see [5]). However, as pointed

out to me by Duncan, the composition of two C-algebra homomorphisms is

again a C-algebra homomorphism, but the same is not true for their sum. So

right now, the best we can say is that Endg(S) is a monoid under composition.

The proof of Proposition 4.3 in [2] was based on the faulty assumption that

Endg(S) is a C-algebra. Hence the main task of this note is to give a correct

proof of the proposition. Here is the proposition, with some improvements

suggested by the referee.

Proposition 4.3. Let X be a complete toric variety, and let S be its

homogeneous coordinate ring. Then

(i) Autg(S) is a connected affine algebraic group of dimension equal to∑s
i=1 |Δi|dimC Sαi

, and (C∗)Δ(1) ⊂ Autg(S) is a maximal torus.

(ii) The unipotent radical Ru of Autg(S) is isomorphic as a variety to an

affine space of dimension
∑s

i=1 |Δi|(dimC Sαi
− |Δi|).

(iii) Autg(S) has a closed subgroup Gs isomorphic to the reductive group∏s
i=1 GL(S′

αi
) of dimension

∑s
i=1 |Δi|2. Also, (C∗)Δ(1) ⊆ Gs.

(iv) Autg(S) is isomorphic to the semidirect product Ru �Gs.
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Proof. To simplify notation, we write the direct sum decompostion Sαi
=

S′
αi

⊕ S′′
αi

from (7) of [2] as Si = S′
i ⊕ S′′

i . Since elements of Endg(S) are

C-linear, preserve degrees, and are determined uniquely by their values on

the variables xρ, we have a bijection of sets

(e1) Endg(S) �
s∏

i=1

HomC(S
′
i, Si),

and we also have an injection

(e2) Endg(S) ↪→
s∏

i=1

EndC(Si)

that is compatible with composition.

We first show that Im(Endg(S)) ⊂
∏s

i=1 EndC(Si) is a variety. Recall from

[2] that φ(S′′
i ) ⊂ S′′

i . It follows that φ ∈ EndC(S) corresponds via (e2) to a

collection of matrices

(e3)

(
Ai 0

Bi Ci

)
∈ EndC(Si), i = 1, . . . , s,

where we use the canonical basis of Si = S′
i⊕S′′

i given by monomials of degree

αi to identify matrices with linear maps. Note that the S′
i-columns

(
Ai

Bi

)
of

(e3) are the data that make up the map (e1). The matrices Ci come from

evaluating φ at monomials in S′′
i , which are products of ≥ 2 variables that lie

in various Sj for j 	= i (this follows from S0 = C). Hence the entries in Ci

are detemined by the matrices Aj , Bj for j 	= i. We will say more about this

below.

One fact we will need is how (e1) relates to composition. Suppose that

φ, ψ ∈ Endg(S) maps to matrices
(
Ai 0

Bi Ci

)
,

(
A′

i 0

B′
i C ′

i

)
, i = 1, . . . , s.

Since (e2) is compatible with composition, we see that φ ◦ ψ corresponds to

the products(
Ai 0

Bi Ci

) (
A′

i 0

B′
i C ′

i

)
=

(
AiA

′
i 0

BiA
′
i + CiB

′
i CiC

′
i

)
, i = 1, . . . , s.

It follows that in the bijection (e1), we have

(e4) if φ ←→
(
Ai

Bi

)
and ψ ←→

(
A′

i

B′
i

)
, then φ ◦ ψ ←→

(
AiA

′
i

BiA
′
i + CiB

′
i

)
.

This will be useful later in the proof.
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The next step is to write down the equations that define Endg(S) inside

of
∏

i=1 EndC(Si) in (e2). Our treatment is inspired by [1, Prop. 5.12]. The

equations come from two sources:

• First, all of the entries in the upper right-hand block must be zero.

This is the “0” in (e3).

• Second, suppose that we have monomials xD, xE ∈ S′′
i . Given φ ∈

Endg(S), we have

φ(xD) = · · ·+ ciEDxE + · · · ,

where ciED is the corresponding entry in Ci in (e3) for φ. But xD is

a product of variables xρ1
· · ·xρ�

, where we allow duplications. Note

that xρj
/∈ S′

αi
since S0 = C. It follows that

ciED = coefficient of xE in φ(xD)

= coefficient of xE in φ(xρ1
) · · ·φ(xρ�

).

Each φ(xρj
) is a linear combination of monomials whose coefficients

are the corresponding entries in the matrices Akj
, Bkj

, where xρj
∈

Skj
, i.e., deg(xρj

) = αkj
. Hence we get an equation linking ciED with

entries in Akj
, Bkj

, j = 1, . . . , �.

This analysis shows that Endg(S) is a linear algebraic monoid in the sense

of [6]. Since Autg(S) is the group of invertible elements of Endg(S), it follows

from [6] that Autg(S) is an algebraic group.

We will need the following characterization of which elements of Endg(S)

are invertible: if φ ∈ Endg(S) corresponds to matrices (e3), then

(e5) φ ∈ Autg(S) ⇐⇒ Ai, Ci are invertible for i = 1, . . . , s.

One direction is obvious. For the other, suppose that the Ai, Ci are all invert-

ible. Then consider the element ψ ∈ Endg(S) such that

ψ ←→
(

A−1
i

−C−1
i BiA

−1
i

)

via (e1). Using (e4), one obtains φ ◦ψ ←→
(
I
0

)
, so that φ ◦ψ is the identity.

But then the matrices associated to φ and ψ multiply to the identity in each

EndC(Si), which means that the same is true when we reverse the order. Hence

ψ ◦ φ is also the identity, which proves that φ ∈ Autg(S). This completes the

proof of (e5).

As in [2], let

N =
s∏

i=1

HomC(S
′
i, S

′′
i ).
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To define 1 + N ⊂ Endg(S), we have to be careful since endomorphisms

cannot be added. We let 1 + N consist of all φ ←→
(

I
Bi

)
via (e1), where

Bi ∈ HomC(S
′
i, S

′′
i ). Then an element φ ∈ 1 +N gives matrices

(e6)

(
I 0

Bi Ci

)
∈ EndC(Si) i = 1, . . . , s.

We claim that these matrices are all unipotent.

To study Ci, we order the monomials in S′′
i so that xD appears before

xE whenever the total degree of xD (as a monomial in the polynomial ring

S) is strictly smaller than the total degree of xE . Take xD ∈ Si and write

xD = xρ1
· · ·xρl

, so that xD has total degree �. Applying φ, we get

φ(xρ) =

�∏
j=1

φ(xρj
) =

�∏
j=1

(
xρj

+
∑

xE∈S′′
deg(xρj

)
bE,jx

E
)
.

Since every monomial in S′′
deg(xρj

) has total degree at least two, multiplying

out the last product gives

φ(xD) = xD + terms of higher total degree.

Given how the monomials in S′′
αi

are ordered, it follows that Ci is lower

triangular with 1’s on the main diagonal. Then the same is true for (e6),

so that (e6) is unipotent as claimed.

Now that we know that Ci is invertible, (e5) and (e6) imply that φ is

invertible. Hence we have proved that 1 + N ⊂ Autg(S). Notice also that

1 +N is a closed subgroup of Autg(S) by (e4) and (e6).

Now we get to our main task, which is to establish the exact sequence of

groups

(e7) 1 −→ 1 +N α−→ Autg(S)
β−→

s∏
i=1

GL(S′
i) −→ 1.

This is the exact sequence (9) of [2].

The map α is the inclusion 1 + N ⊂ Autg(S) proved above. The map β

is also easy to describe: if φ ∈ Autg(S) is specified by
(
Ai

Bi

)
, then the Ai are

invertible by (e5) and hence give an element of
∏s

i=1 GL(S′
i). This is β(φ).

Note that β is a group homomorphism by (e4).

The map α is clearly injective, and (e7) is exact at Autg(S) by the definition

of 1+N . It remains to prove that β is onto. Suppose that we have invertible

matrices Ai ∈ GL(S′
i) for i = 1, . . . , s. Then consider φ, ψ ∈ Endg(S) such

that

(e8) φ ←→
(
Ai

0

)
and ψ ←→

(
A−1

i

0

)
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via (e1). Using (e4), one computes that

φ ◦ ψ ←→
(

AiA
−1
i

0 ·A−1
i + Ci · 0

)
=

(
I

0

)
.

This proves that φ◦ψ is the identity, and switching φ and ψ shows that ψ◦φ is

the identity as well. Thus φ ∈ Autg(S). Since β maps φ to the Ai, surjectivity

follows.

Hence (e7) is exact, and we also know that 1+N is unipotent. Then part

(ii) of the proposition follows because, as a variety, we have 1+N � N , which

is an affine space of the required dimension.

For part (iii), note that the first half of (e8) gives a section

s∗ :

s∏
i=1

GL(S′
i) −→ Autg(S)

of the exact sequence (e7). Note that s∗ is a group homomorphism by (e4).

The image is easily seen to be an algebraic subgroup containing (C∗)Δ(1).

This proves part (iii) of the proposition, and parts (iv) and (i) now follow

without difficulty in view of (e7). The proof is complete. �
Here are some final comments:

• Lemma 1.3 of [2] is only used in the invalid proof of Proposition 4.3 in

[2]. Hence this lemma can be ignored when reading the paper. In the

proof of Proposition 4.3 presented here, the ordering of Lemma 1.3 is

replaced by the total degree ordering on the polynomial ring S.

• The sentence following the first display in the proof of Proposition 4.5

of [2] needs to be modified: “is the maximal torus and hence lies in

Gs” should be “is a maximal torus contained in Gs.”

• In [4] Demazure gives a functorial construction of the automorphism

group of a toric variety X. In [2] the approach is more concrete, based

on the construction of Autg(S) as a matrix group. It would be useful

to show that these two methods lead to the same algebraic group.
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