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Abstract

An integral convex polytope P ⊂ RN possesses the integer decomposition prop-
erty if, for any integer k > 0 and for any α ∈ kP∩ZN , there exist α1, . . . , αk ∈ P∩ZN

such that α = α1 + · · · + αk. A fundamental question is to determine the integers
k > 0 for which the dilated polytope kP possesses the integer decomposition prop-
erty. In the present paper, combinatorial invariants related to the integer decompo-
sition property of dilated polytopes will be proposed and studied.

Introduction

Integral convex polytopes have been studied from the viewpoints of commutative algebra
and algebraic geometry together with enumerative combinatorics, combinatorial optimiza-
tion and statistics. Recall that an integral convex polytope P ⊂ RN is a convex polytope
all of whose vertices have integer coordinates.

There is an entire network [14, p.2313] of combinatorial and algebraic properties that
involve integral convex polytopes and their positive integer multiples [4, 5, 10]. In par-
ticular, some properties may fail for given polytope but hold for a large positive integer
multiple kP . We call kP = {kα : α ∈ P} ⊂ RN a dilated polytope.

The surprise is that the threshold where a given property starts to hold can differ from
one property to the next. The goal of the present paper is to explore these thresholds and
relate them to other interesting invariants of integer points in polytopes.
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We begin with four aspects of an integral convex polytope P that will lead to six
invariants. After defining the invariants, we will say more about what they mean.

(0.1) Integer Decomposition Property. P ⊂ RN possesses the integer decomposition
property or (IDP) for short if, for every integer k = 1, 2, . . . and for all α ∈ kP ∩ ZN ,
there exist α1, . . . , αk belonging to P ∩ ZN such that α = α1 + · · · + αk. The (IDP) is
important in the theory and application of integer programming ([16, §22.10]). It also
arises naturally in the study of toric varieties ([5] and [6, Ch. 2]).

Not every integral polytope possesses (IDP), but sufficiently large dilations do. The
threshold where this first occurs leads to two numerical invariants of P :

µmidp(P) = the smallest integer k > 0 for which kP has (IDP). (1)

µidp(P) = the smallest integer k > 0 for which nP has (IDP) for all n > k. (2)

The reason for two invariants is that even if kP has (IDP), the same need not be true for
(k + 1)P . We will give examples of this phenomenon in Example 2.3.

If we weaken (IDP) by replacing “for every integer” with “for every sufficiently large
integer”, we get the notion of very ample. Thus P is very ample if, for every sufficiently
large integer k � 0 and for any α ∈ kP ∩ZN , there exist α1, . . . , αk belonging to P ∩ZN

such that α = α1 + · · · + αk. In particular, if P possesses (IDP), then P is very ample.
The term “very ample” arises from toric geometry. By [1, Proposition 2.1], the definition
of very ample polytope given here is equivalent to the toric version given in [6, Definition
2.2.17].

Not every integral polytope is very ample, but sufficiently large dilations are. Hence
we get the following invariant:

µva(P) = the smallest integer k > 0 for which kP is very ample. (3)

Note that if kP is very ample, then so is (k + 1)P .

(0.2) The Hilbert Basis. P ⊂ RN gives the rational polyhedral cone C(P) ⊂ RN+1

generated by the vertices of P̃ = P × {1} ⊂ RN+1. A finite set of integer vectors
{h1, . . . ,hs} ⊂ ZN+1 is a Hilbert basis of C(P) if every point of C(P)∩ZN+1 is a nonnegative
integer combination of h1, . . . ,hs. A Hilbert basis exists [8] and a minimal Hilbert basis
is unique [17]. Let H(C(P)) denote the minimal Hilbert basis of C(P).

The degree of (α, n) ∈ C(P) ∩ ZN+1 is deg(α, n) = n. Applied to the minimal Hilbert
basis, we get the following invariant:

µHilb(P) = the maximal degree of elements belonging to H(C(P)). (4)

(0.3) The δ-Vector. The number of integer points in the dilations of P gives the
generating function∑

k>0

|kP ∩ ZN |tk =
δ0 + δ1t+ · · ·+ δdt

d

(1− t)d+1
, d = dimP .
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We call δ(P) = (δ0, δ1, . . . , δd) the δ-vector of P [9, Chapter XI]. It is also known that
δ0 = 1 and δi > 0 for all i. We note that the δ-vector is sometimes called the h∗-vector or
the Ehrhart h-vector.

The largest index where δi > 0 gives the following invariant:

µEhr(P) = the maximal integer i for which δi > 0. (5)

The above generating function is determined by the Ehrhart polynomial of P , which
explains the name of the invariant.

For later purposes, we note that (d + 1) − µEhr(P) is the least integer k for which
k(P \ ∂P) ∩ ZN 6= ∅ [2, Theorem 4.5]. Thus knowing µEhr(P) is equivalent to knowing
the smallest dilation of P with an interior integer point.

(0.4) Boxes and Holes. A simplex S ⊂ RN is empty if S ∩ ZN is the set of vertices
of S. Given an empty simplex S ⊂ RN , we define the finite subset Box(S) ⊂ C(S) as
follows:

Box(S) =

{ ∑
vi∈S∩ZN

ri(vi, 1) ∈ ZN+1 : 0 6 ri < 1

}
.

It is well known that H(C(S)) ⊂ Box(S) ∪ (S̃ ∩ ZN+1).
If P ⊂ RN has dimension d, then define Box(P) to be

Box(P) =
⋃
S

Box(S) \ Z>0(P̃ ∩ ZN+1),

where the union is over all empty simplices S ⊂ P of dimension d. Note that H(C(P)) ⊂⋃
S H(C(S)) ⊂ Box(P) ∪ (P̃ ∩ ZN+1).

Each element of Box(P) is called a hole of P . This leads to our final invariant:

µhole(P) = the maximal degree of elements belonging to Box(P), (6)

with the convention that µhole(P) = 1 if Box(P) = ∅.
An integral convex polytope P of dimension d thus has the six invariants

µmidp(P), µidp(P), µva(P), µHilb(P), µEhr(P), µhole(P)

defined in (1)–(6). The goal of this paper is to study the relations among these invariants.
These invariants have different flavors that involve geometry, algebra, and lattice

points. Here are some brief comments:

• In toric geometry, P determines a line bundle on the toric variety of the normal fan
of P . Then µva(P) is the smallest multiple of this line bundle that is very ample in
the sense of algebraic geometry.

• (IDP) and very ample are related to the lattice structure of the polytope. More
precisely, they describe two notions of what it means for P to have “enough” in-
teger points: for (IDP), the integer points of P generate all integer points in its
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dilations, while for very ample, the integer points of P give the same toric variety
as the normal fan of P , as explained in [6, Chapter 2]. Thus µmidp(P) and µva(P)
give the smallest dilations of P with “enough” integer points in these two senses.
Furthermore, µidp(P) gives the smallest dilation where it and all further dilations
have (IDP).

• Another invariant of the lattice structure is µEhr(P), since it is determined by count-
ing integer points in dilations.

• In contrast, µHilb(P) is an invariant of the algebraic structure of the semigroup
C(P) ∩ ZN+1 since it is determined by the semigroup’s Hilbert basis.

• Finally, µhole(P) is a mixture of the lattice structure (integer points in boxes) and

the algebraic structure (removing the semigroup Z>0(P̃ ∩ ZN+1)).

Remark 0.1. In the book [3], two notions closely related to (IDP) are described. Let
P ⊂ RN be an integral convex polytope of dimension d. The authors of [3] define P to
be integrally closed if P satisfies

Z>0(P̃ ∩ ZN+1) = C(P) ∩ ZN+1

and normal if P satisfies

Z>0(P̃ ∩ ZN+1) = C(P) ∩ Z(P̃ ∩ ZN+1).

Then P satisfying (IDP) is equivalent P being integrally closed, but not necessarily equiv-
alent to P being normal.

To complicate matters, the books [6] and [13] use the term “normal” for a polytope
that is integrally closed in the sense of [3]. Because of this inconsistency, we use the term
“(IDP)” for this concept. Besides avoiding confusion, (IDP) has the advantage of being
more descriptive, in that lattice points in dilations of a polytope with (IDP) have “integer
decompositions” as sums of integers points of the polytope. As noted earlier, the term
“(IDP)” is widely used in integer programming.

We now discuss the contents of the paper. In Section 1, we give basic inequalities
which the invariants satisfy. More precisely, Theorem 1.1 says that

1 6 µva(P)
6

6

µmidp(P) 6 µidp(P) µEhr(P) 6 d

µHilb(P) d− 1

µhole(P)
6 6

6 6
(7)

Various examples, some new and some old, will be supplied in Section 2. In Theorem
2.1, we construct, given integers d > 3 and 2 6 j 6 d − 1, an empty simplex P of
dimension d with all six invariants equal to j. At the other extreme, we give examples of
integral convex polytopes P , P ′ and P ′′ with
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• µva(P) < µmidp(P), µva(P) < µHilb(P);

• µmidp(P ′) < µidp(P ′) < µhole(P ′), µHilb(P ′) < µhole(P ′);

• µhole(P ′′) < µEhr(P ′′),

showing that the inequalities in (7) can be strict. In Theorem 2.6, we construct, given an
integer d > 4, an integral convex polytope P of dimension d such that

µmidp(P) = µidp(P) = d− 2 < d− 1 = µHilb(P).

We also give an example where µHilb(P) < µmidp(P). These last two inequalities show
that there is no general comparison between µmidp(P) and µHilb(P). This explains the
middle of (7).

Moreover, in Section 3, more detailed relations between µmidp(P) and µidp(P) will be
discussed (Theorem 3.2). Finally, we compute in Section 4 the invariants of edge polytopes
arising from finite graphs.

1 Invariants related to dilated polytopes

In this section, we discuss the six invariants of an integral convex polytopes P of dimension
d related to (IDP). More precisely, we prove the following.

Theorem 1.1. For the invariants appearing in the introduction of an integral convex
polytope P ⊂ RN of dimension d > 2, the following inequalities hold:

1 6 µva(P)
6

6

µmidp(P) 6 µidp(P) µEhr(P) 6 d

µHilb(P) d− 1

µhole(P)
6 6

6 6
(8)

Proof. The inequalities 1 6 µva(P) 6 µmidp(P) 6 µidp(P) and µEhr(P) 6 d are clear from
their definitions. On the other hand, since the assertions are obvious if P has (IDP), we
assume that Box(P) is not empty.

• µidp(P) 6 µhole(P): This inequality is proved, though not stated, in [12]. We give the
proof for the sake of completeness.

It follows from Gordan’s Lemma [16, Theorem 16.4] and Carathéodory’s Theorem [16,
Corollary 7.1i] that C(P) ∩ ZN+1 consists of the elements of

{α + x : α ∈ Box(P) ∪ {0}, x ∈ Z>0(P̃ ∩ ZN+1)}.

Thus for n > µhole(P) and an element α ∈ (`n)P∩ZN , we can write (α, `n) ∈ C(P)∩ZN+1

as (α0, n0) + (α1, 1) + . . . + (αr, 1) with n0 6 n for some (α0, n0) ∈ C(P) ∩ ZN+1 and
(αi, 1) ∈ C(P) ∩ ZN+1 for each 1 6 i 6 r. These summands can now be grouped into `

elements of nP̃ ∩ ZN+1.
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• µhole(P) 6 µEhr(P): Let (α, µhole(P)) ∈ Box(P) attain µhole(P). Then, by definition
of Box(P), we can describe (α, µhole(P)) as a linear combination of (d + 1) linearly in-

dependent lattice vectors in P̃ . Say, (α, µhole(P)) =
∑d

i=0 ri(vi, 1) with 0 6 ri < 1. Let

β =
∑d

i=0(1− ri)vi ∈ ZN . Since 1− ri > 0 and
∑d

i=0(1− ri) = d+ 1− µhole(P), one has
β ∈ (d+ 1− µhole(P))(P \ ∂P) ∩ ZN , certifying d+ 1− µEhr(P) 6 d+ 1− µhole(P).

• µva(P) 6 µHilb(P): Let α be a vertex of P , and let β be an integer point in the cone
generated by P − α. Then, for a sufficiently large integer k, we have (β + kα, k) ∈
C(P) ∩ ZN+1. This point can be written as a nonnegative integral linear combination of
H(C(P)): (β + kα, k) =

∑
h∈H(C(P))whh with wh ∈ Z>0. This implies that

(β, 0) =
∑

h∈H(C(P))

wh

[
(h+ (µHilb(P)− deg(h))(α, 1)) − µHilb(P)(α, 1)

]
is a nonnegative integral linear combination of integer points in µHilb(P)(P − α) × {0},
showing that µHilb(P)P is very ample.

• µHilb(P) 6 µhole(P): This follows from H(C(P)) ⊂ Box(P) ∪ (P̃ ∩ ZN+1).

• µhole(P) 6 d− 1: Here is the argument from [12]. Let S ⊂ RN be an empty simplex of
dimension d and let v0, v1, . . . , vd be its vertices. Given v ∈ Box(S) there are r0, r1, . . . , rd
with 0 6 ri < 1 such that v =

∑d
i=0 ri(vi, 1). Since ri < 1, one has deg(v) =

∑d
i=0 ri <

d + 1. Suppose that deg(v) = d. Then all ri must be positive. Moreover, we have∑d
i=0(1 − ri) = 1 and 0 < 1 − ri < 1. Thus the integer point

∑d
i=0(1 − ri)vi belongs to

the interior of S, a contradiction. Hence deg(v) 6 d− 1.

2 Proper inequalities of (8)

In this section, we present a series of examples of integral convex polytopes. Each example
satisfies a proper inequality in (8).

Before giving them, we prove that there exists an integral convex polytope P attaining
µva(P) = µmidp(P) = µidp(P) = µHilb(P) = µhole(P) = µEhr(P).

Theorem 2.1. Given integers d > 3 and 2 6 j 6 d− 1, there exists an empty simplex P
of dimension d with µva(P) = µmidp(P) = µidp(P) = µHilb(P) = µhole(P) = µEhr(P) = j.

Proof. Fix positive integers d and j with d > 3 and 2 6 j 6 d−1 and let e1, . . . , ed be the
standard basis of Rd. Then we define P ⊂ Rd to be the convex hull of {v0, v1, . . . , vd} ⊂ Zd,
where v0 = 0 = (0, . . . , 0), vi = ei for i = 1, . . . , d− 1 and

vd = (1, . . . , 1︸ ︷︷ ︸
j

, 0, . . . , 0, j).

Let (δ0, δ1, . . . , δd) be the δ-vector of P . We will prove that P enjoys the required prop-
erties.
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Since the determinant of the matrix with columns v1, . . . , vd is j, the normalized volume
of P is j. Moreover,

q

j
(v0, 1) +

q

j

j∑
i=1

(vi, 1) +
j − q
j

(vd, 1) = (e1 + · · ·+ ej + (j − q)ed, q + 1), (9)

where q = 1, . . . , j − 1. Thus δq > 1 for q = 2, . . . , j ([9, Proposition 27.7]). Since∑d
i=0 δi = j and each δi is nonnegative, one has

(δ0, δ1, . . . , δd) = (1, 0, 1, 1, . . . , 1︸ ︷︷ ︸
j−1

, 0, . . . , 0).

In particular, µEhr(P) = j. Moreover, from δ1 = 0, P is an empty simplex. Thus, once we
show µva(P) > j, we conclude that P has the desired properties by (8) in Theorem 1.1.

Using (9), one can show without difficulty that the Hilbert basis H(C(P)) is

(P̃ ∩ Zd+1) ∪ {(e1 + · · ·+ ej + (j − q + 1)ed, q) : q = 2, . . . , j}.

Now, we show that kP cannot be very ample for 1 6 k < j. Let k be an integer with
1 6 k < j and m the least common multiple of k and j. Write m = kg with g > 2. Let

α = (α0,m+ `k), α0 = (m− j + `k + 1)e1 + e2 + · · ·+ ej + ed,

where ` is an arbitrary nonnegative integer. Since

α = (m− j + `k)(v1, 1) + (e1 + · · ·+ ej + ed, j),

it follows that α belongs to C(P)∩Zd+1. This implies, first, that α 6∈ Z>0(P̃ ∩Zd+1) and,
second, that

α0 ∈ (m+ `k)P ∩ ZN = (g + `)(kP) ∩ ZN .

If kP was very ample, then for sufficiently large `, we could write α0 = α1 + · · · + αg+`,
where α1, . . . , αg+` ∈ kP ∩ ZN . Then the dth coordinate of each of α1, . . . , αg+` must be
0 or 1. Consider (αi, k) ∈ C(P) ∩ Zd+1 for 1 6 i 6 g + `. Since each h ∈ H(C(P)) with
2 6 deg h 6 k is of the form

h = (e1 + · · ·+ ej + (j − i+ 1)ed, i),

where i = 2, . . . , k, none of α1, . . . , αg+` can be expressed by using such elements. Thus

each of (α1, k), . . . , (αg+`, k) must be written as the sum of k elements belonging to P̃ ∩
Zd+1. It then follows that α = (α0,m+`k) can be written as the sum of (m+`k) elements

belonging to P̃ ∩Zd+1. This contradicts α 6∈ Z>0(P̃ ∩Zd+1). Consequently, kP cannot be
very ample, as required.

The following three examples (Example 2.2, 2.3 and 2.4) show the existence of integral
convex polytopes attaining each of the proper inequalities of (8).
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Example 2.2 (µva(P) < µmidp(P) and µva(P) < µHilb(P)). The existence of a very
ample integral convex polytope not having (IDP) is easy to see. In fact, for any d > 3, we
may take the product of the very ample polytope not having (IDP) of dimension 3 and
the the unit cube of dimension d − 3. Such a polytope of dimension 3 is described, e.g.,
in [3, Exercise 2.24].

Example 2.3 (µmidp(P) < µidp(P) < µhole(P) and µHilb(P) < µhole(P)). Let d =
2m−1 with m > 4 and P be the integral simplex whose vertex set is {0, e1, . . . , ed−1, (m−
1)e1 + · · ·+ (m− 1)ed−1 +med}. Then it is immediate to see that one has

Box(P) = {(j, . . . , j, 2j) : j = 1, . . . ,m− 1}.

Thus, for j = 2, . . . ,m − 1, we can write (j, . . . , j, 2j) = j(1, . . . , 1, 2). This implies that
{x ∈ H(C(P)) : deg(x) > 2} = {(1, . . . , 1, 2)}. Hence µHilb(P) = 2, while µhole(P) =
2m− 2 = d− 1.

Moreover, we also know that

C(P) ∩ Zd+1 = Z>0(P̃ ∩ Zd+1) ∪
{(j, . . . , j, 2j) + x : 1 6 j 6 m− 1, x ∈ Z>0(P̃ ∩ Zd+1)}.

(10)

It then follows from (10) that for every element α in 2kP ∩ Zd with k > 1, we can write
α = α1 + · · · + α`, where k 6 ` 6 2k and αi ∈ P ∩ Zd or αi = (1, . . . , 1) ∈ 2P ∩ Zd. By
rewriting appropriately, we can express α = α′1 + · · · + α′k, where α′i ∈ 2P ∩ Zd. This
means that µmidp(P) = 2.

On the other hand, we have (3, . . . , 3) ∈ 2(3P) ∩ Zd but (3, . . . , 3) 6∈ {α + β : α, β ∈
3P∩Zd} because of 3 6 m−1 and (10). Similarly, kP does not possess (IDP) when k is odd
and k 6 m−1. However, if k > m, then Q = kP has (IDP). In fact, for α ∈ `Q∩Zd with
` > 2, since `k > 2k > 2m and Box(P) has at most degree 2m−2 elements, we can express
α as α = (j, . . . , j)+α′, where 1 6 j 6 m−1 and α′ ∈ {α′1+ · · ·+α′q : αi ∈ P∩Zd, q > 2}.
Thanks to q > 2, α can be described as a sum of ` elements belonging to Q ∩ Zd. Hence
we obtain

µidp(P) =

{
m− 1 if m is odd,

m if m is even.

Therefore, in summary,

2 = µHilb(P) = µmidp(P) < µidp(P) = 2
⌊m

2

⌋
< µhole(P) = 2m− 2.

Example 2.4 (µhole(P) < µEhr(P)). When P is an integral convex polytope of di-
mension d which contains an integer point in its interior, one has µEhr(P) = d but
µhole(P) 6 d − 1. For example, let us consider the integral simplex P of dimension
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d > 3 whose vertices are 0 and the row vectors of d× d matrix
1 0 · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0
d+ 1 · · · · · · d+ 1 d+ 2

 .

Let v0 = 0 and let vi denote the ith row vector. Then the integer point

2

d+ 2
v0 +

1

d+ 2
(v1 + · · ·+ vd) = (1, . . . , 1)

is contained in the interior of P , implying µEhr(P) = d. On the other hand, it is easy to
see that

Box(P) =

{(⌊
d+ 1

2

⌋
+ 1, . . . ,

⌊
d+ 1

2

⌋
+ 1,

⌊
d+ 1

2

⌋)}
,

implying µhole(P) =
⌊
d+1
2

⌋
.

Next, we consider possible relations between µHilb(P) and µmidp(P) and also between
µHilb(P) and µidp(P). As is shown below, there are no relations between them.

Example 2.5 (µHilb(P) < µmidp(P)). The following integral simplex P of dimension
13 has µHilb(P) = 3 but µmidp(P) = 4: Let P be a convex hull of 0 and the row vectors

of the matrix

(
A 0
0 B

)
, where A (resp. B) is a 7× 7 (resp. 6× 6) matrix such that


1 0 · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0
3 · · · · · · 3 4

 (resp.


1 0 · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0
1 · · · · · · 1 2

).

Notice that A corresponds to the polytope in Example 2.3 in the case of m = 4. It can
be verified that

H(C(P)) = (P̃ ∩ Zd+1) ∪ {(1, . . . , 1︸ ︷︷ ︸
7

, 0, . . . , 0︸ ︷︷ ︸
6

, 2), (0, . . . , 0︸ ︷︷ ︸
7

, 1, . . . , 1︸ ︷︷ ︸
6

, 3)}.

Thus µHilb(P) = 3. On the other hand, neither 2P nor 3P possesses (IDP). (In fact,

(0, . . . , 0, 1, . . . , 1, 4) ∈ C(2P)∩Zd+1 \Z>0(2̃P ∩Zd+1) and (3, . . . , 3, 0, . . . , 0, 6) ∈ C(3P)∩
Zd+1 \ Z>0(3̃P ∩ Zd+1).) Hence µmidp(P) > 4. In fact, one can show that µmidp(P) = 4.

Note that an example attaining µHilb(P) < µidp(P) has been already given in Example
2.3. The following theorem gives an example attaining both µHilb(P) > µmidp(P) and
µHilb(P) > µidp(P).
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Theorem 2.6. Given an integer d > 4, there exists an integral convex polytope P of
dimension d such that µHilb(P) = d− 1 and µmidp(P) = µidp(P) = d− 2.

Let d > 4 be an integer and let M = d(d − 2) + 1. We define vj ∈ Zd, 1 6 i 6 d, as
follows:

vj =


0, j = 0,

ej, j = 1, . . . , d− 1,

e1 + · · ·+ ed−1 +Med, j = d.

Let v′j = vj + ed for j = 0, 1, . . . , d. We write P ⊂ Rd for the integral convex polytope
of dimension d with the vertices v0, v1, . . . , vd and v′0, v

′
1, . . . , v

′
d. Such a convex polytope

appears in [7, Theorem 2].
The following Lemmas 2.7 and 2.8 prove Theorem 2.6, that is, they show that P enjoys

the required properties in Theorem 2.6. Let

u(k)s = e1 + · · ·+ ed−1 + ((k − 1)d+ s)ed for k = 1, . . . , d− 2 and s = 1, . . . , d

and
u = u

(1)
d = e1 + · · ·+ ed−1 + ded.

Lemma 2.7. Let P be as above. Then the Hilbert basis H(C(P)) is equal to

(P̃ ∩ Zd+1) ∪ {(u(k)s , d− k) : k = 2, . . . , d− 2, s = 1, . . . , d} ∪ {(u, d− 1)}. (11)

Thus, in particular, µHilb(P) = d− 1.

Proof. If q ∈ {1, . . . ,M − 1}, then there exist unique integers k and s with 1 6 k 6 d− 2
and 1 6 s 6 d such that q = (k − 1)d+ s. Since

(d− 2)s− k + 1

M
(v0, 1) +

M − q
M

d−1∑
j=1

(vj, 1) +
q

M
(vd, 1)

= (e1 + · · ·+ ed−1 + qed, d− k) = (u(k)s , d− k) ∈ Zd+1,

it follows that (u
(k)
s , d − k) = (e1 + · · · + ed−1 + qed, d − k) ∈ C(P) ∩ Zd+1. When k = 1

and s = 1, . . . , d− 1, one has q = s and

(e1 + · · ·+ ed−1 + qed, d− 1) =
s∑

j=1

(v′j, 1) +
d−1∑

j=s+1

(vj, 1).

Hence (e1 + · · · + ed−1 + qed, d − 1) cannot belong to H(C(P)) for q 6 d − 1. Now, it is
routine work to show that, by considering the facets of the cone C(P), the Hilbert basis
H(C(P)) coincides with (11).

Lemma 2.8. We have µmidp(P) = µidp(P) = d− 2.
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Proof. One can easily see the identities

(u, d− 1) + (vi, 1) = (v′i, 1) +
∑d−1

j=1(v′j, 1) for i = 0, 1, . . . , d,

(u, d− 1) + (v′i, 1) = (v0, 1) + (vi, 1) + (u
(2)
1 , d− 2) for i = 0, 1, . . . , d,

(u, d− 1) + (u
(d−2)
s , 2) = (v0, 1) + (vd, 1) +

∑s−1
j=1(v

′
j, 1) +

∑d−1
j=s(vj, 1),

(u, d− 1) + (u
(k)
s , d− k) = (u

(k+1)
s , d− k − 1) +

∑d−1
j=0(vj, 1) for k = 2, . . . , d− 3,

(u, d− 1) + (u, d− 1) = (u
(2)
d , d− 2) +

∑d−1
j=0(vj, 1).

It then follows that

(C(P) ∩ Zd+1) \ {(u, d− 1)} = Z>0(H(C(P)) \ {(u, d− 1)}).

Moreover, if k + k′ > d, then

(u(k)s , d− k) + (u
(k′)
s′ , d− k′) ={

(vd, 1) + (u
(k+k′−d+1)
s+s′−1 , 2d− k − k′ − 1), if s+ s′ 6 d+ 1,

(v0, 1) + (vd, 1) + (u
(k+k′−d+2)
s+s′−1−d , 2d− k − k′ − 2), if s+ s′ > d+ 2.

If k + k′ 6 d− 1, then

(u(k)s , d− k) + (u
(k′)
s′ , d− k′) ={

(u
(k+k′−1)
s , d− k − k′ + 1) +

∑s′

j=1(v
′
j, 1) +

∑d−1
j=s′+1(vj, 1), if s′ 6 d− 1,

(u
(k+k′)
s , d− k − k′) +

∑d−1
j=0(vj, 1), if s′ = d.

Consequently, when we write α ∈ C(P)∩Zd+1 by using at least two u
(k)
s ’s, we can reduce

one u
(k)
s . Hence α can be expressed by using at most one u

(k)
s belonging to H(C(P)).

Let P ′ = (d − 2)P and α ∈ nP ′ ∩ Zd. Since d > 4, one has n(d − 2) 6= d − 1. Thus
(α, n(d− 2)) 6= (u, d− 1). By the above discussions, there exists an expression of α of the
form

(α, n(d− 2)) = v′ +

n(d−2)−deg(v′)∑
j=1

(v′′j , 1),

where v′ ∈ {(u(k)s , d− k) : k = 2, . . . , d− 2, s = 1, . . . , d} and each v′′j ∈ P ∩ Zd. Since the
degree of v′ is at most d− 2, there exists an expression of α of the form

α = α1 + · · ·+ αn

with each αi ∈ P ′ ∩ Zd. Hence P ′ possesses (IDP). By µidp(P) 6 d − 1, kP possesses
(IDP) for k > d− 1. Thus, we obtain µidp(P) 6 d− 2.

Now it is easy to see that for r < d − 2, rP never possesses (IDP). Therefore, we
conclude that µmidp(P) = µidp(P) = d− 2.
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3 Restrictions on invariants

In this section, we discuss more restrictions on the invariants. We consider the following
question.

Question 3.1. Let d, a1, a2, a3, a4, a5, a6 be positive integers satisfying

a1 6 a2 6 a3 6 a5 6 a6 6 d and a1 6 a4 6 a5 6 d− 1.

Then does there exist an integral convex polytope P of dimension d such that

µva(P) = a1, µmidp(P) = a2, µidp(P) = a3, µHilb(P) = a4, µhole(P) = a5

and µEhr(P) = a6?

From some easy observations, we cannot assign these positive integers freely. In fact,
it is obvious that

• if either µmidp(P) or µHilb(P) is 1, then µva(P) = µmidp(P) = µidp(P) = µHilb(P) =
µhole(P) = 1;

• if µmidp(P) < µidp(P), then µidp(P) > µmidp(P) + 2.

Moreover, we also see non-trivial restrictions.

Theorem 3.2. The following assertions hold:

(1) if µmidp(P) > (d− 1)/2, then µidp(P) = µmidp(P);

(2) if µmidp(P) 6 (d− 1)/2, then µidp(P) 6 (d− 3)/2 + µmidp(P).

Before proving these, we recall the following lemma.

Lemma 3.3 (cf. [6, Theorem 2.2.12]). Let P ⊂ RN be an integral convex polytope of
dimension d. Given α ∈ nP ∩ ZN for n > d− 1, α can be written like

α = α′ + α1 + · · ·+ αn−d+1,

where α′ ∈ (d− 1)P ∩ ZN and α1, . . . , αn−d+1 ∈ P ∩ ZN .

A proof of this lemma appears in the proof of [6, Theorem 2.2.12].

Proof of Theorem 3.2. (1) It suffices to show that for an integral convex polytope P ⊂ RN

of dimension d with µmidp(P) > (d− 1)/2, nP possesses (IDP) for every n > µmidp(P).
Let k = µmidp(P). Let n > k and let α ∈ m(nP) ∩ ZN for m > 2. Since mn > 2n >

2k > d− 1, thanks to Lemma 3.3, we obtain

α = α′ + α1 + · · ·+ αmn−d+1,
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where α′ ∈ (d− 1)P ∩ ZN and α1, . . . , αmn−d+1 ∈ P ∩ ZN . Moreove, since kP has (IDP),
there are α′1 and α′2 in kP ∩ ZN such that

α′1 + α′2 = α′ + αmn−2k+1 + · · ·+ αmn−d+1 ∈ 2kP ∩ ZN .

Therefore,

α = α′1 +
n−k∑
i=1

αi︸ ︷︷ ︸
nP∩ZN

+α′2 +

2(n−k)∑
i=n−k+1

αi︸ ︷︷ ︸
nP∩ZN

+
m−2∑
i=1

n∑
j=1

α2(n−k)+(i−1)n+j︸ ︷︷ ︸
nP∩ZN

.

This implies that nP possesses (IDP).
(2) It suffices to prove that for an integral convex polytope P ⊂ RN of dimension d with
µmidp(P) 6 (d− 1)/2, nP possesses (IDP) for every n > (d− 3)/2 + µmidp(P).

For m > 2, let α ∈ m(nP)∩ZN . Since mn > 2n > d− 3 + 2µmidp(P) > d− 1, thanks
to Lemma 3.3, we obtain

α = α′ + α1 + · · ·+ αmn−d+1,

where α′ ∈ (d− 1)P ∩ ZN and α1, . . . , αmn−d+1 ∈ P ∩ ZN .
Let k = µmidp(P) and ` = min{i : ik > d − 1}. Since kP has (IDP), an element

α′+αmn−`k+1+ · · ·+αmn−d+1 belonging to `(kP)∩ZN can be written such as α′1+ · · ·+α′`,
where α′i ∈ kP ∩ ZN . Remark that `k − d+ 1 6 mn− d+ 1 because

mn− `k > 2n− `k > d− 3 + 2k − `k > d− 2− (`− 1)k > 0.

Thus α can be rewritten as

α = α′1 + · · ·+ α′` + α1 + · · ·+ αmn−`k.

Let p = bn/kc and q = n − pk, i.e., n = pk + q with 0 6 q 6 k − 1. When p > `,
since n > `k, it follows easily that α can be written as a sum of m elements of nP ∩ ZN .
Assume that p < `. Then we have mn− `k > q and n− (`− p)k > 0. In fact,

mn− `k − q > 2n− `k − q = n− (`− p)k
> d− 3 + 2k − `k − (k − 1) = d− 2− (`− 1)k > 0.

Thus we obtain that

α =

p∑
i=1

α′i +

q∑
j=1

αj︸ ︷︷ ︸
nP∩ZN

+
∑̀
i=p+1

α′i +

n−(`−p)k∑
j=1

αq+j︸ ︷︷ ︸
nP∩ZN

+
m−2∑
r=1

n∑
i=1

αn−(`−p)k+q+(r−1)n+i︸ ︷︷ ︸
nP∩ZN

.

This says that nP possesses (IDP), as desired.

As an immediate corollary of Theorem 3.2, we obtain the following.
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Corollary 3.4. If µidp(P) = d− 1, then µmidp(P) = d− 1.

Proof. Suppose that µmidp(P) 6= d − 1. In particular, µmidp(P) < d − 1. If µmidp(P) >
(d− 1)/2, then µidp(P) = µmidp(P) < d− 1 by Theorem 3.2 (1). Moreover, if µmidp(P) 6
(d−1)/2, then µidp(P) 6 (d−3)/2+µmidp(P) 6 (d−3)/2+(d−1)/2 < d−1 by Theorem
3.2 (2). Hence, µidp(P) is never equal to d− 1, as desired.

Question 3.5. Work with the same notation as above.

(1) Is there some relation between µmidp(P), µidp(P) and µHilb(P)? The examples given
in [11, Cor. 15] show that the relations may be complicated.

(2) Assume that µidp(P) > 1. Is it true that µHilb(P) = 2 if µva(P) = 1?

Remark 3.6. The recent preprint [11] contains examples that shed light on our invariants.

(1) In an earlier version of our paper, we asked in Question 3.5(1) if there exists a
polytope P such that µmidp(P) < µHilb(P) < µidp(P). As shown in [11, Sec. 4], the
answer is yes.

(2) In the earlier version, we asked in Question 3.5(2) if µmidp(P) = µidp(P) = 2 when
µva(P) = 1 and µidp(P) > 1. An example from [11, Sec. 4] show that this can fail.

(3) In the earlier version, we also asked if (n+m)P possesses (IDP) whenever nP and
mP possess (IDP). The paper [11] constructs a 50-dimensional polytope P25,27 such
that 2P25,27 and 3P25,27 have (IDP) while 5P25,27 does not.

4 The case of dilated edge polytopes

Finally, we discuss the case of edge polytopes.
Recall that for a connected simple graph G on the vertex set {1, . . . , d} with the edge

set E(G), the edge polytope of G is the convex polytope PG ⊂ Rd which is the convex hull
of {ei + ej : {i, j} ∈ E(G)}. Also:

• An odd cycle is a cycle with odd length.

• A cycle C in G is called minimal if C possesses no chord.

• A pair of disjoint odd cycles C and C ′ in G is said to be exceptional if there is no
bridge between C and C ′ in G.

• We say that G satisfies the odd cycle condition if each pair of disjoint odd cycles is
not exceptional.

It is known by the proof of [15, Theorem 2.2] that for a connected graph G, PG has
(IDP) if and only if PG is normal, although this fact is not mentioned explicitly. It is also
proved that PG is normal if and only if G satisfies the odd cycle condition ([15, Corollary
2.3]).
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Proposition 4.1. Let G be a connected simple graph on {1, . . . , d} which does not satisfy
the odd cycle condition. For disjoint odd cycles C1 and C2, let

m(C1, C2) =
`(C1) + `(C2)

2
,

where `(Ci) denotes the length of a cycle Ci. For an edge polytope PG, one has

µva(PG) = µHilb(PG)

= max {m(C,C ′) : (C,C ′) is an exceptional pair of minimal odd cycles}

and

µhole(PG) = max

{
l∑

i=1

m(C2i−1, C2i)

}
,

where C1, . . . , C2l are disjoint and each of (C2i−1, C2i) is an exceptional pair of minimal
odd cycles. If there is no exceptional pair, we let these maximums be one.

Proof. In the case of edge polytopes, by [15, Theorem 2.2], H(C(PG)) and Box(PG) can
be written in terms of exceptional pairs of minimal odd cycles as follows: For a pair of
minimal odd cycles C and C ′, let

e(C,C ′) =
∑

i∈V (C)∪V (C′)

ei,

where V (C) denotes the set of vertices of a cycle C. Then we have

H(C(PG)) = {e(C,C ′) : (C,C ′) is an exceptional pair of minimal odd cycles}

and

Box(PG) =

{
l∑

i=1

e(C2i−1, C2i)

}
, (12)

where C1, . . . , C2l are disjoint and each of (C2i−1, C2i) is an exceptional pair of minimal
odd cycles. Since e(C1, C2) ∈ m(C1, C2)PG ∩ ZN , we obtain µHilb(PG) = M , where M =
max{m(C,C ′) : (C,C ′) is an exceptional pair of minimal odd cycles}, and µhole(PG) =

max
{∑l

i=1m(C2i−1, C2i)
}

. Our goal is to show µva(PG) >M .

Let C1 and C2 be disjoint minimal odd cycles and let (C1, C2) be exceptional and
M = m(C1, C2). Assume that {i1, i2} is one edge in C1. For each positive integer `, since
there is no bridge between C1 and C2 and these cycles are minimal, one has

e(C1, C2) + `(ei1 + ei2) ∈ ((M + `)PG ∩ ZN) \ {α1 + · · ·+ αM+` : αi ∈ PG ∩ ZN}.

Fix a positive integer n with n < M . For every integer m > min{k : kn >M}, one has

e(C1, C2) + (mn−M)(ei1 + ei2) ∈ m(nPG) ∩ ZN .

Since n < M , this integer point cannot be written as a sum of m elements belonging
to nPG ∩ ZN . This says that nPG is never very ample. Therefore, µva(PG) > M , as
desired.
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On µmidp(PG) and µidp(PG) of edge polytopes PG, these are not necessarily equal to
M , although we still have µidp(PG) > µmidp(PG) >M because of µva(PG) = M .

Example 4.2. Let us consider the graph G on the vertex set {1, . . . , 25} with the edge
set

E(G) = {{3i+ 1, 3i+ 2}, {3i+ 2, 3i+ 3}, {3i+ 1, 3i+ 3}, {3i+ 1, 25} : 0 6 i 6 7}.

Then each of exceptional pairs of minimal odd cycles in this graph consists of two cycles
of length 3. Thus we have µva(PG) = µHilb(PG) = 3. Moreover, since this graph contains
four disjoint exceptional pairs of minimal odd cycles, one has µhole(PG) = 12. In addition,
we also see that 3PG has (IDP). Hence µmidp(PG) = 3. On the other hand, neither 4PG

nor 5PG has (IDP). In fact,

(1, . . . , 1︸ ︷︷ ︸
24

, 0) ∈ 3(4PG) ∩ Z25 \ {α1 + α2 + α3 : αi ∈ 4PG ∩ Z25} and

(1, . . . , 1︸ ︷︷ ︸
20

, 0, 0, 0, 0, 0) ∈ 2(5PG) ∩ Z25 \ {α1 + α2 : αi ∈ 5PG ∩ Z25}.

Thus µidp(PG) > 6. In fact, one can show that µidp(PG) = 6.
Let us consider the graph G′ on the vertex set {1, . . . , 30} with the edge set

E(G′) = E(G) ∪ {{25 + i, 26 + i}, {26, 30} : i = 0, 1, 2, 3, 4}.

Then there is an exceptional pair consisting of minimal odd cycles of length 3 and 5. Thus
µva(PG′) = µHilb(PG′) = 4. Moreover, one has µhole(PG′) = 13. In addition, similar to the
case of the above G, neither 4PG′ nor 5PG′ has (IDP). However, we can check that kPG′

has (IDP) for k > 6, implying µmidp(PG′) = µidp(PG′) = 6.
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