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I hear, I forget. I do, I understand:
a modified Moore-method mathematical statistics course

Abstract

Moore introduced a method for graduate mathematics instruction that consisted primarily of individ-

ual student work on challenging proofs (Jones 1977). Cohen (1992) described an adaptation with less

explicit competition suitable for undergraduate students at a liberal arts college. This paper details an

adaptation of this modified Moore-method to teach mathematical statistics, and describes ways that such

an approach helps engage students and foster the teaching of statistics.

Groups of students worked a set of 3 difficult problems (some theoretical, some applied) every two weeks.

Class time was devoted to coaching sessions with the instructor, group meeting time, and class presen-

tations. R was used to estimate solutions empirically where analytic results were intractable, as well as

to provide an environment to undertake simulation studies with the aim of deepening understanding and

complementing analytic solutions. Each group presented comprehensive solutions to complement oral

presentations. Development of parallel techniques for empirical and analytic problem solving was an ex-

plicit goal of the course, which also attempted to communicate ways that statistics can be used to tackle

interesting problems. The group problem solving component and use of technology allowed students to

attempt much more challenging questions than they could otherwise solve.

Keywords: capstone course, empirical problem solving, intermediate statistics, R software, RStudio

integrated development environment, reproducible analysis, simulation studies, statistical computing,

statistical education
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1 Introduction

In this paper, an implementation of a mathematical statistics course is described with the goal of devel-

oping a combination of analytic and empirical problem-solving skills through the solution of challenging

problems and complex case studies. The course, offered at the Department of Mathematics and Statistics

at Smith College in spring 2007 and spring 2011, adapted the approach of R.L Moore (Jones 1977),

using modifications suggested by Cohen (1992). A similar mathematical statistics course is described by

McLoughlin (2008).

In the next subsection, recent developments in statistics education are described, followed by an overview

of the modified Moore-Cohen method. Section 2 describes specific details of the course, Section 3 pro-

vides two example problems (with empirical as well as analytic solutions), Section 4 describes grading

and assessment while Section 5 provides additional discussion and closing thoughts.

1.1 Developments in statistical education

Extensive curricular reforms in undergraduate statistics education have transformed our programs and

courses in recent decades (Cobb 1992, Moore, Cobb, Garfield & Meeker 1995, Cobb 2011). The Guide-

lines for Assessment and Instruction for Statistics Education (GAISE) report (GAISE College Group

2005), which succinctly described these changes, recommended that introductory statistics courses:

• Emphasize statistical literacy and develop statistical thinking,

• Use real data,

• Stress conceptual understanding rather than mere knowledge of procedures,

• Foster active learning in the classroom,

• Use technology for developing conceptual understanding and analyzing data, and

• Use assessments to improve and evaluate student learning.

Other related efforts have attempted to broaden the types of questions that statistics students grapple with

(Brown & Kass 2009, Gould 2010), increase the use of case studies (Barrows & Tamblyn 1980, Nolan &

Speed 2000, Nolan 2003) and take advantage of sophisticated computing technologies and environments
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such as R (Ihaka & Gentleman 1996) or Matlab (Kaplan 2003) to buttress understanding of statistical

concepts (Buttrey, Nolan & Temple Lang 2001, Nolan & Temple Lang 2003, Horton, Brown & Qian

2004, Froelich 2008, Nolan & Temple Lang 2010, Lazar, Reeves & Franklin 2011).

The mathematical statistics course has undergone many transformations during this same period. A lively

panel in 2003 with the provocative title “Is the Math Stat Course obsolete?” (Rossman & Chance 2003)

provided a glimpse into ways that this intermediate level statistics course is adapting to a changing

landscape. One idea raised was that the math stat course (still a common entry point to the field for many

students studying mathematics) should convey the excitement of the discipline (“even if they don’t go

on [in statistics], we want them to leave thinking statistics is interesting”). Another was that modeling,

computing and problem-solving are key components of such a course.

Cobb (2011) provides a series of capsule summaries of innovations in the teaching of mathematical

statistics, and discusses key tensions that underlie our courses in terms of what we want students to

learn:

Surely the most common answer must be that we want our students to learn to analyze data,

and certainly I share that goal. But for some students, particularly those with a strong interest

and ability in mathematics, I suggest a complementary goal, one that in my opinion has not

received enough explicit attention: We want these mathematically inclined students to learn

to solve methodological problems. I call the two goals complementary because, as I shall

argue in detail, there are essential tensions between the goals of helping students learn to

analyze data and helping students learn to solve methodological problems.

For a ready example of the tension, consider the role of simple, artificial examples. For

teaching data analysis, these “toy” examples are often and deservedly regarded with con-

tempt. But for developing an understanding of a methodological challenge, the ability to

create a dialectical succession of toy examples and exploit their evolution is critical (p. 32).

1.2 Moore and Cohen methods

Moore was noted (Halmos 1985) for quoting the Chinese proverb I hear, I forget. I see, I remember. I do,

I understand. He provided classes with a list of definitions and theorems which they would subsequently

prove individually and then share with the rest of the class. Competition was a key driving force in the

course (Jones 1977), with efforts to ensure that student background was as homogeneous as possible. The

overall goal was to build student capacity to create structure from an axiomatic basis and communicate
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this to others. Smith, Yoo & Nichols (2009) described possible evaluations and assessment of Moore

method mathematics courses.

Cohen (1992) modified Moore’s approach using three guiding principles:

• Students understand better and remember longer what they discover themselves than what is told

to them,

• People master an idea thoroughly when they teach it to someone else, and

• Effective writing and clear thinking are inextricably linked (p. 474).

A fourth principle incorporated in this mathematical statistics course involved the use of R (R Core

Team 2013) and RStudio (an open source integrated development environment for R) to facilitate parallel

empirical and analytic problem solving techniques.

Much of the class time is spent with students working as a group and individually to solve sets of chal-

lenging problems, writing up solutions, and presenting them to the class as a whole. While each group

tackled problems from each of the major units of the course, group members would tend to learn their

assigned problems in more detail and rely on their classmates to convey understanding of the other prob-

lems.

The Moore and Cohen approaches deal more with pedagogy than with curriculum. Moore used his

method to teach proofs in topology. Cohen used his method for linear algebra. Here we borrow Cohen’s

pedagogy for a course in mathematical statistics. Students are not given theorems to prove as in Moore’s

courses; instead they are given challenging problems to solve.

These problems are chosen according to four criteria. The first two are critical to the pedagogy: each

problem should be easy to grasp, and each should be hard enough that solving it poses a genuine chal-

lenge. The first criterion helps ensure that all students in a group can participate; the second helps ensure

that stronger students will not be able to cut off discussion with a quick solution.

A third criterion is that the problems should have links to actual applications. This is in the spirit of the

GAISE recommendations.

Fourth, the problems should lend themselves to parallel and complementary pairs of solutions, one based

on simulation and the other based on theory. The parallel solutions constitute a recurring theme to the
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course, one that is central to the curriculum. This criterion is in some ways incidental to the pedagogy,

although it helps ensure that students with different strengths and backgrounds can contribute actively to

group work.

2 Details of the course

For the sections (officially titled “Seminar in Mathematical Statistics”) taught by the author in Spring

2007 and Spring 2011, the class met three times per week for 80 minutes per session for thirteen weeks.

While the only required prerequisite for the class was probability, most students in the course had also

taken introductory statistics and linear algebra. No specific knowledge of statistics was assumed. At

the beginning of the course, the students took the 40 item multiple choice CAOS (Comprehensive As-

sessment of Outcomes in a first statistics course) test (DelMas, Garfield, Ooms & Chance 2006). While

designed to assess student reasoning after a first course in statistics (and not a mathematical statistics

class), the CAOS focuses on conceptual understanding of variability and uncertainty. The average score

for the mathematical statistics students on the CAOS pre-test was 67.2% correct with a standard deviation

of 13.6% (values ranged from 43% to 90%).

The structure of the course included (almost) no lectures. Instead, the material was broken down into a

number of problem sets. These questions were designed to be sufficiently difficult to provide a challenge

to students, but still amenable (with some assistance) to solution.

During the first offering, four groups of 3 students were created, with seven groups of 3 students for

the second offering. Each group would work a different set of problems for each problem set (with

an occasional problem assigned to all groups). Throughout the semester, these groups were reshuffled

twice, with no two individuals being in the same group twice. The re-balancing helped to address issues

with groups that consisted of only weak students (as well as to provide a release valve for problems with

group dynamics).

Most class sessions consisted of a series of “coaching” sessions several days after the initial presentation

of the problems. These coaching sessions, described in detail in Cohen (1992), are critical in helping

to guide students towards the desired solution without providing the answer. All students in a group

attended a given coaching session, and discussed their preliminary attempts at the problems. In some

cases they may have solved their problems. More commonly additional guidance was needed for them to

make progress or to elaborate on their solutions. Early on in the course, much of this coaching involved
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support and scaffolding for the use of computing (to allow them to gradually build their skills in terms

of simulation and exploration).

Each student created a draft of their preliminary solution in preparation for a second coaching session.

To ensure that all students were engaged and making good faith efforts, these were reviewed by the

instructor. One per group was graded in detail, to provide general feedback for all students.

The second coaching session was used to help answer any remaining questions and assist with prepa-

rations of the solutions (“weekly papers”). Other assistance was provided outside of the regular class

meeting times by email or during office hours.

Before the final class session for a given set of problems, each group created a single clear and com-

prehensive solution, which was made available to the class. Finally, each group gave a 15 minute oral

presentation that reviewed their solution, with questions and answers as needed.

2.1 Textbooks and topics

The approach suggested by Cohen (1992) to teach analysis of linear algebra provides students several

pages of axioms, definitions, theorems and problems. This serves as the foundation from which all of the

remaining material is derived. Because of the need for more extensive material to support student work

in a range of mathematical statistical topics, the text by Rice (1995) was used for background reading as

well as the source of many of the problems. In addition, several modules (including case studies with

advanced data analysis) were integrated from Nolan & Speed (2000).

The course began with a series of challenging probability problems, covering selected topics and high-

lights from Chapters 1 through 5 of Rice (1995). The next set of problems related to descriptive and

graphical visualization (covering Chapter 10 of Rice (1995) and the Maternal smoking and infant health

module from Nolan & Speed (2000)). Two sets of problems were devoted to estimation and the bootstrap

(Chapter 8 of Rice (1995) and the Patterns in DNA and Who plays video games? modules from Nolan &

Speed (2000)). Testing hypotheses and assessing goodness of fit (Chapter 9 of Rice (1995)) comprised

two sets of problems, while Chapter 10 was used as a basis for a set on two sample comparisons. The

first time the course was offered, it closed with a set of problems entitled Bayesian inference: a big idea,

based loosely on Chapter 15 of Rice (1995) and Section 2.5 of Lavine (2013), while the second offering

closed with precursors of informal inference and simulation studies of inference rules (Wild, Pfannkuch,

Regan & Horton 2010).
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2.2 Real data and mathematical statistics

While the course did not focus on advanced analysis of multivariate datasets, real data was regularly

incorporated into the course, primarily as a component of problems assigned to the students throughout

the semester. The textbooks by Rice as well as Nolan & Speed are notable for the number and variety

of motivating examples provided throughout, including the exercises. As an example, students might be

asked to find the method of moments estimator for θ for a Pareto distribution with known scale parameter

x0, and compare this to the maximum likelihood estimator for θ. After finding the analytic results, and

simulating to compare the variance of the estimators, they would be asked to calculate and interpret the

sample statistic using data from an economic survey. Another set of problems related to the analysis of

cell probabilities expected by genetic theories, through estimation of underlying parameters. Students

were assessed both on their ability to report in context on the underlying applied statistical question, as

well as on the relevant statistical derivations or simulations that they carried out.

As outlined by the GAISE guidelines, use of real data is essential to the introductory course, and cen-

tral also to any statistics curriculum as a whole. Nevertheless, for certain individual courses that serve

as elements of a larger statistics curriculum, real data may be less essential. There is an inherent com-

plementarity between analysis of data using existing methods and the development of new methods

(Cobb 2011). We need a curriculum that teaches students to engage, appreciate and enjoy both data an-

alytic and methodological challenges. In a course such as the one described here, although connections

to real data are important, the balance is weighted towards problems of a more abstract sort.

2.3 Technology

This approach would not be feasible without the use of computing technology to facilitate analysis and

simulation. R (Ihaka & Gentleman 1996) and RStudio (http://rstudio.org) provided a flexible

and adaptable environment for exploration (Horton et al. 2004, Pruim 2011).

RStudio is an open-source integrated development environment that provides a consistent and powerful

interface for R (an open source general purpose statistical package, http://r-project.org) that

is easier to install, learn and run than standard R. LATEX (Lamport 2011) within the Sweave (Leisch

2002) system was used as the formatting environment for the solutions, with an annotated example

distributed to all students during the initial class meeting. This included examples of tables, figures,

cross referencing, bibliography and other useful attributes. Submissions were made available to students

as both Sweave source and PDF files to allow students to borrow working code. RStudio is particularly
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attractive because it simplifies the user interface and has tightly integrated support for Sweave (including

a single button click to Compile PDF from the source document). In future offerings, the Markdown

system within the knitr package (Xie 2012) will be used, as it provides simplified functionality and

does not require knowledge of LATEX.

The course intentionally introduced students to concepts of reproducible analysis (Gentleman & Tem-

ple Lang 2007), where computation, code and results of an analysis are integrated. Being able to re-run

a set of simulations and regenerate a report with a single click is a powerful motivator for students used

to error-prone processes of cutting and pasting output and figures. Reproducible analysis systems are

becoming standard in industry and academia, have the potential to help ensure better statistical analysis,

and should be incorporated in the statistics curriculum.

To help simplify the learning curve for these somewhat complex systems, a number of examples and

idioms were provided by the instructor, to help build students’ repertoire of useful techniques to at-

tack problems. Students were encouraged to write their initial solutions using pseudo-code (an informal

description that could later be turned into working R code). These were also posted to the course man-

agement system to facilitate re-use in other problems and settings.

3 Example problems and solutions

To give a better sense of the course, we describe two problems that were completed by the students,

along with model solutions and commentary (additional examples are found in the online supplement).

Each group would generally work 3 or 4 problems per assignment.

These problems feature both empirical (simulations in R) and analytic (closed-form) solutions by the

groups. They range from easier to more challenging, but illustrate the approaches taken by students in

three separate application areas. The general level of difficulty is similar to that of Rice (1995)∗.

3.1 Pooled blood sera sampling

It is known that 5% of the members of a population have disease X, which can be discovered by a blood

test (that is assumed to perfectly identify both diseased and nondiseased populations). Suppose that N
∗Rice states on page xi that This book includes a fairly large number of problems, some of which will be quite difficult for

students. My students confirmed this assertion.
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people are to be tested, and the cost of the test is non-trivial. The testing can be done in two ways:

(A) Everyone can be tested separately; or (B) the blood samples of k people are pooled to be analyzed.

Assume that N = nk with n an integer. If the test is negative, all the people tested are healthy (that is,

just this one test is needed). If the test result is positive, each of the k people must be tested separately

(that is, a total of k + 1 tests are needed for that group)†.

Questions:

i. For fixed k what is the expected number of tests needed in (B)?

ii. Find the k that will minimize the expected number of tests in (B).

iii. Using the k that minimizes the number of tests, on average how many tests does (B) save in

comparison with (A)? Be sure to check your answer using an empirical simulation.

3.1.1 Empirical (simulation-based) solution

We attempted to gain a better understanding of the problem by simulation. First, we set k = 10, n = 500

and P (infected) = p = 0.05 (refer to Figure 1 for code). Given these specific values for each of the

variables, we found the expected number of tests to be approximately 2501.9. We then used this value to

help us check our analytic solution.

Next, we tried different values of k and n such that N (the number of people to be tested) equaled 5000.

We did this to find the value of k that minimized the expected number of tests. Given that N = 5000,

possible integer values for k were 2, 4, 5, 8, and 10. We found the expected number of tests for each

of these k values, respectively were 2988.7, 2178.9, 2126.5, 2306.2, and 2501.9. For this example, the

minimum value is found when k = 5.

3.1.2 Analytic (closed-form) solution

Approach (A): the expected number of tests needed is E[TA] = N = n ∗k, because we would be testing

each individual exactly once.

†This assumes that all of the tests are run at the same time. Otherwise, if the pool tested positive and the first k − 1 tests
were negative, there would be no need to test the final member of the pool.
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numsim = 1000
p = 0.05 # probability of infection
k = 10 # size of pool
n = 500 # number of pools
N = n*k # total number of people

# for Approach (A), E[# tests] = N
# for Approach (B), find E[# tests] if pooled?
res = numeric(numsim) # stash results
for (i in 1:numsim) {

disease = rbinom(N, size=1, prob=p)
poolmat = matrix(disease, nrow=k, ncol=n)
Y = apply(poolmat, 2, sum)>=1
res[i] = n+sum(Y)*k

}
mean(res)
sd(res)
curve(N/x+x*(N/x)*(1-(1-p)ˆx), xlab="number in pool (k)",

ylab="expected number", from=2, to=10)

Figure 1: R code to generate empirical estimates using Approach (B)

For Approach (B):

i. Let Y = the # of pools infected and TB = the total number of tests needed. Assuming independence,

we have thatE[Y ] = n(1− .95k) andE[TB] = n+kE[Y ] = n+k(n(1− .95k)). WithN = 5000

people, this simplifies to: E[TB] = 5000(1/k + (1 − .95k)). When k = 10, n = 500 and

P (infected) = p = 0.05, E[TB] = 2506.3, which closely matches the results from the simulation.

ii. We find the derivative ofE[TB] with respect to k and solve (using a symbolic mathematics package

such as Maple or Wolfram Alpha), which yields a positive solution of k = 5.022 (see Figure 2).

When k = 5,

E[TB] = n+ 5(n(1− .955)) = n+ 1.13n = 2.13n = 2130.

This result is similar to that shown in the empirical simulations.

iii. We compare the two expected number of tests needed for each of the approaches when k = 5 and

p = 0.05:

E[TA]/E[TB] = 5n/2.13n = 2.35.
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Figure 2: Display of expected number of blood tests required as a function of pool-size (k), with N =
5000, p = 0.05
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Approach (A) requires an average of 2.35 times the number of tests than Approach (B). Figure 2

demonstrates that this ratio is greater than 1 for pool sizes between 2 and 10, given a prevalence of

0.05.

3.1.3 Commentary

This problem was part of a series of probability questions at the start of the course. While more efficient

programming approaches could be used, the empirical solution features a number of idioms and tricks of

the trade that are repeated throughout the class.

This example demonstrates a setting where the analytic solution is straightforward using basic properties

of expectations, but where the empirical solution provides a useful check on the results. This type of

question helps students build confidence in using knowledge from the prerequisite course in new ways.

3.2 Sampling from a probability distribution

Questions [from Evans & Rosenthal (2004)]:

i. Is it possible to find a tractable expression for the cdf of a distribution with density given by:

f(y) = c(1+ |y|)3 exp(−y4), where c is a normalizing constant and y is defined on the whole real

line? If not, can you find c?

ii. Show how to generate a sample of observations from this distribution.

iii. Describe how this is useful in Bayesian inference.

3.2.1 Solution

i. While it is possible to find a closed-form solution for the cdf of this distribution it is not easily

solvable. Note that because the density is a function of the absolute value of y, the integral can be

broken into two symmetric parts. To find c, we evaluate twice the integral from [0,∞) in R:

> f = function(x){exp(-xˆ4)*(1+abs(x))ˆ3}

> integral = integrate(f, 0, Inf)
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> 2 * integral$value

[1] 6.809611

Hence c = 1/6.809611 ∼= 0.15.

ii. We created a Markov Chain Monte Carlo sampler, using the Metropolis-Hastings algorithm. The

premise for this algorithm is that it chooses proposal probabilities so that after the process has

converged draws are generated from the desired distribution. A further discussion for enthusiasts

can be found on Page 610 of Evans & Rosenthal (2004). We find the acceptance probability

α(x, y) in terms of two densities, our f(y) and q(x, y), a normal proposal density with mean x

and variance 1, so that

α(x, y) = min

{
1,
f(y)q(y, x)

f(x)q(x, y)

}
= min

{
1,
c exp (−y4)(1 + |y|)3(2π)−1/2 exp (−(y − x)2/2)
c exp (−x4)(1 + |x|)3(2π)−1/2 exp (−(x− y)2/2)

}

= min

{
1,

exp (−y4 + x4)(1 + |y|)3

(1 + |x|)3

}

Pick an arbitrary value for X1. The Metropolis-Hastings algorithm then computes the value Xn+1

as follows:

1. Generate Yn+1 from a normal(Xn, 1).

2. Let y = Yn+1, compute α(x, y) as before.

3. With probability α(x, y), let Xn+1 = Yn+1 = y (use proposal value). Otherwise, with proba-

bility 1− α(x, y), let Xn+1 = Xn = x (keep previous value).

The code (displayed in Figure 3), uses the first 100,000 iterations as a burn-in period, then gener-

ates 100,000 samples. A histogram is displayed in Figure 4.

iii. The Metropolis-Hastings algorithm is a form of Markov Chain Monte Carlo (MCMC) and is par-

ticularly attractive when the posterior density function does not have a familiar integral (such as

when f(x) is a posterior density that does not correspond to a conjugate prior).

Simulation is a central part of applied Bayesian analysis, because of the relative ease with which

samples can be generated from a probability distribution, even when the density function cannot

be explicitly integrated (see page 25 of Gelman, Carlin, Stern & Rubin (2004)).
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x = seq(from=-3, to=3, length=200)
pdfval = 1/6.809610784*exp(-xˆ4)*(1+abs(x))ˆ3
par(mfrow=c(2, 1)); plot(x, pdfval, type="n"); lines(x, pdfval)
title("Actual pdf")

alphafun = function(x, y) { return(exp(-yˆ4+xˆ4)*(1+abs(y))ˆ3*
(1+abs(x))ˆ-3) }

numvals = 100000; burnin = 100000
i = 1
xn = 3 # arbitrary value to start
while (i <= burnin) {

propy = rnorm(1, mean=xn, sd=1)
alpha = min(1, alphafun(xn, propy))
unif = runif(1) < alpha
xn = unif*propy + (1-unif)*xn
i = i + 1

}
i = 1
res = rep(0, numvals)
while (i <= numvals) {

propy = rnorm(1, mean=xn, sd=1)
alpha = min(1, alphafun(xn, propy))
unif = runif(1) < alpha
xn = unif*propy + (1-unif)*xn
res[i] = xn
i = i + 1

}
hist(res, nclass=20, main="Metropolis-Hastings samples",

xlab="x", freq=FALSE)

Figure 3: R code to generate Metropolis-Hastings samples
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3.2.2 Commentary

This problem was taken from the final set of problems, entitled Bayesian statistics: a big idea, which

was intended to introduce students to more sophisticated simulations that are necessary to get answers

for more complex models. Because the students had no prior experience with MCMC, a preliminary

mini-lecture on the topic was provided along with supporting readings from Lavine (2013). This in-

cluded some classic examples with conjugate priors. Throwing the nasty density function at students

was initially off-putting, but it helped to motivate MCMC methods and introduce Bayesian ideas and

methods. The goal of this section was to give students a glimpse into a flexible and sophisticated set of

models that can tackle problems far outside the realm of a traditional math stat class.

4 Grading and assessment

Assessment of students in the course was done in several ways. Students completed 7 sets of problems

over the course of the semester (each one approximately 2 weeks apart). Grades on preliminary solutions

and weekly papers constituted 35% of the grade, with class participation, attendance and oral presenta-

tions an additional 20%. Two midterm exams accounted for 40% while 5% reflected good faith effort

towards completion of low-stakes online assessments. The midterm exams had in-class and take-home

components. They included problems similar to those undertaken by the groups, albeit with simpler

solutions.

An informal mid-semester evaluation was undertaken approximately halfway through the course. For

the first offering of the course, a colleague met with the class during the last 15 minutes of a class

session (without the instructor present). Feedback from this assessment indicated great worries about the

structure of the take-home midterm (would the problems be as hard as Rice?) and queries about other

forms of assessment.

For the second offering, a more formal evaluation was undertaken where a staff member from the college

learning center spent the last 20 minutes of a class session with students in focus groups. The students

appreciated the structure of the course and the opportunities for revision. They “like that we get lectures

on background, the collaboration and group work” and “like that we do analytic and empirical solu-

tions.” Students sought more input from the instructor, with a desire for more lectures to “put things into

perspective.” Some students suggested that the instructor “tell us what are the key points to absolutely

know from each problem set.” The final question from the focus groups related to the students’ roles
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as learners. Students revealed that they understand that they have to prepare more thoroughly for class,

improve their own class participation and assume additional responsibilities outside of class. The stu-

dents acknowledged that they should read the text more carefully, read other groups’ problems before

the presentations, and “try harder” with Rice.

The outside evaluator summarized the report with the following quote:

As you made clear to me in our discussion, although your students may want you to tell

them “the key points to absolutely know,” you believe strongly that they must work their way

towards knowledge mastery in this course. To assist them in achieving this end, you have

structured the course in ways that require them to work individually and collaboratively–

with guidance from you–as they become more expert and reflective learners.

Many of your students are uneasy with this approach and unsure of themselves: they want

to know the right answers, the correct way to think, hence their request for more input

from you. Their unease marks them as less sophisticated about real learning and/or timid

about undertaking independent intellectual journeys. You might have an explicit discussion

with your students about your pedagogy and your learning goals for them. I suspect they

would be quite responsive to this kind of communication given their high regard for you and

this course: they know you believe in them. And, since their answers to the third question

reveal that they are aware of their own responsibilities as students, you could also use this

discussion to reinforce their own good insights on becoming more active and inquisitive

learners.

The students also completed the CAOS post-test at the end of the class, with a mean of 72.5% correct

(sd=13%, min=43%, max=90%). There was a statistically significant increase in scores compared to the

pre-test (paired t-test p=0.01, df=30, 95% confidence interval from 1.4 to 9.2 point increase). Figure

5 displays the relationship between pre and post scores (with a solid scatterplot smoother plus dashed

POST = PRE line). There is some indication of larger improvement for students with lower pre-test

scores, which is consistent with a ceiling effect. Given that the CAOS test is intended to assess outcomes

from a first course, this is not surprising.
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Figure 5: Relationship between student outcomes on the CAOS (Comprehensive Assessment of Out-
comes in a first Statistics course) from the class in 2007 and 2011 (plus smoothed line and POST =
PRE line).
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5 Discussion

This paper describes an implementation of a modified Moore-Cohen method mathematical statistics

course at an undergraduate liberal arts college. The course featured a series of challenging problems,

some theoretical, others data-driven, designed to help teach mathematical statistics using applications.

A key idea is that the use of technology (R/RStudio and reproducible analysis tools) has opened up new

possibilities.

An attractive aspect of the proposed course was how it intentionally dovetailed with the GAISE recom-

mendations (GAISE College Group 2005). In particular, it was designed to encourage statistical thinking

through empirical problem solving, use real data to motivate methods, stress conceptual understanding,

foster active learning and use technology to develop conceptual understanding. The course is consistent

with the American Statistical Association guidelines for statistics programs (Workgroup on Undergrad-

uate Statistics 2000), which call for students to develop effective technical writing, presentation skills,

teamwork and collaboration, in addition to knowledge of statistics.

5.1 Comparisons, advantages and limitations

This approach differs significantly from the traditional Moore-method, which was developed for a definition-

theorem-proof type course and relies primarily on individual work and competition as a motivator. The

modified Moore-Cohen method uses group work to facilitate engagement, with stronger students able to

plunge more deeply into their solutions while still ensuring that weaker students can receive assistance as

needed. This modification might be better thought of as a species split-off, where rather than competing,

students are supported to go beyond their expectation and discover something in themselves.

A primary challenge of teaching is to engage students in the material being studied. Cohen (1992) noted

that the method effectively raises the level of communication between students and that most students are

stimulated by the change from passive to active learning. Lazar et al. (2011) described the importance

of capstone courses in statistics. Structuring the class with multiple, challenging problems that were

not amenable to quick individual solution helped to achieve the goals of a capstone. This includes get-

ting students to grapple with real-world problems, helping them develop capacities to work effectively

in groups, augmenting their ability to compute to extend their problem-solving abilities, and helping

them to sharpen their abilities to communicate the complexity and power of statistical methods. The

course also dovetails with other efforts to involve students in interdisciplinary research projects (Legler,

Roback, Ziegler-Graham, Scott, Lane-Getaz & Richey 2010), which tend to focus on larger, more com-
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plex datasets in the context of a client discipline.

While no formal assessment of the course was undertaken, student feedback from less formal appraisals

was generally positive. Students found the approach to be challenging, particularly at the beginning of the

semester when they were confronted with simultaneously learning R/RStudio, LATEX/Sweave, empirical

problem solving techniques as well as oral and written presentation skills. The particular technical

challenges of learning new packages and systems quickly receded, and the primary challenge related to

answering difficult questions and learning new material, concepts and statistical methods.

A limitation of problem or case-based courses is that they typically cover fewer topics in more depth.

That was true for this course, which had more constrained coverage goals than the traditional math stat

class (though most of the typical key concepts were covered). In addition, students would be expected

to have variable mastery of particular topics that were included, since they engaged in the problems

that their group was assigned at an intense level, but had more passive involvement in the problems that

other groups presented. The combination of written and oral presentation of solutions from other groups

was designed to minimize these disparities. Ideally students would emerge from the course with useful

capacities (such as ability to compute with data, simulate to approximate answers, and communicate

orally and through their writing) that would allow them to fill any gaps in their knowledge and succeed

in a graduate level course.

Classes that include group work as a component of assessments often have group dynamic issues, and

this course was no exception. In general there was a positive sense of community and engagement which

flowed from the group-based workload. Knowing that the groups would be reshuffled twice helped as

well. Focusing much of the work in groups allowed students to tackle far more challenging questions

than they could solve individually and also modeled a common post-college work environment. Several

students have provided anecdotal reports of the value of learning tools for statistical computing and

reproducible analysis.

There are other challenges to use of this method for teaching the mathematical statistics courses. The

enrollments were 12 and 20 students in Spring 2007 and Spring 2011, respectively. While scaling to

course sizes of 30–40 students would be straightforward, larger class sizes would require different sys-

tems and structures. These might include multiple sections taught with some common mini-lectures,

doubling up on problems or student support for computing. The time commitment was comparable to a

standard course, due to the extensive coaching and preparation, despite the fact that formal lectures were

relatively short (generally at the start of each new topic).
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5.2 Use of technology

Empirical (simulation-based) estimation complements analytic solutions, and can often allow approxi-

mate solution of extremely challenging problems. Besides providing a useful check on analytic answers,

these simulations can help with insights into how to solve a problem. R and RStudio serve as a flexible

and powerful environment for such exploration.

A number of technologies were prominently featured in the course. These included extensive use of

LATEX and R. Reproducible analysis (the Sweave system (Leisch 2002) as implemented within RStudio)

greatly facilitated integration of commands, output and graphics, and led to better facility for students to

undertake analyses outside the course. This scaffolding also helped to move students from a “point and

click” approach to statistical analysis towards a more flexible scripting interface. Further discussion of

how to integrate reproducible analysis and effective mechanisms to build students’ ability to “compute

with data” are important issues but lie somewhat outside the scope of this paper.

Other courses may find the use of R and RStudio for simulation and approximation of analytic solutions

to be helpful, without the Moore-method approach. The new text by Pruim (2011) features such a

presentation.

5.3 Closing thoughts

Cobb (2011) argues that the profession needs two types of statisticians: those with the capacity to

appropriately analyze and interpret data, as well as those with interest in devising novel solutions to

methodological challenges. Teaching mathematical statistics in this manner has the potential to foster

engagement by presenting students with extended glimpses of the excitement of developing statistical

procedures to solve challenging problems (Nolan & Temple Lang 2010). This approach could also serve

as a model for other intermediate and advanced undergraduate statistics classes. This method may also

be relevant for the teaching of similar quantitative courses in other disciplines.
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Online Appendix: Additional Example Problems

I hear, I forget. I do, I understand:
a modified Moore-method mathematical statistics course

The following material is proposed as an online appendix.

5.4 Estimating σ using IQR

Assume that we observe n iid observations from a normal distribution. Questions:

i. Use the IQR of the list to estimate σ.

ii. Use simulation to assess the variability of this estimator for samples of n = 100 and 400.

iii. How does the variability of this estimator compare to ŝ (usual estimator)?

numsim=1000; mu=42; n1=100; n2=400
runsim = function(numsim, n, mu, sigma) {

res1 = numeric(numsim); res2 = res1
for (i in 1:numsim) {

mynorms = rnorm(n, 0, sigma)
vals = quantile(mynorms)
res1[i] = (vals[4]-vals[2])/1.34898
res2[i] = sd(mynorms)

}
return(data.frame(IQR=res1, S=res2))

}
res100 = runsim(numsim, n1, mu, pi)
res400 = runsim(numsim, n2, mu, pi)
boxplot(res100$IQR, res100$S, res400$IQR, res400$S,

names=c("n=100 (IQR)","n=100 (S)",
"n=400 (IQR)", "n=400 (S)"),
ylab="distribution of sigma-hat")

text(3.5, 4.0, "True sigma is 3.14159")
abline(h=pi); abline(v=2.5)

Figure 6: R code to carry out simulation study (estimation of σ)
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Figure 7: Distribution of sample estimates by estimator and sample size
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5.4.1 Solution

i. We know that for a standard normal random variable P (Z > 0.675) = 0.25. So we would expect
that the IQR (interquartile range) would extend to 2 ∗ .6745 = 1.35 standard units. We use this
expectation to determine the estimator: s̃ = IQR/1.35.

ii. We carried out a simple simulation study with a fixed mean and standard deviation (set to π). A
thousand simulations of samples were taken using s̃ and ŝ (MLE). The results are displayed in
Figure 7. We note that both estimators are less variable when n = 400 than for n = 100 and
conclude that the variability of the estimators goes down as a function of

√
n.

iii. The IQR for s̃ is 0.50 for n=100 and 0.25 for n=400, while the IQR for ŝ is 0.30 for n=100 and
0.16 for n=400. We conclude that the MLE is more efficient than our ad-hoc estimator.

5.4.2 Commentary

This exercise was included with a problem set mid-way through the class as the nature and properties
of estimators were explored. This problem introduced the idea of a simulation study to investigate the
behavior of a new estimator. While the analytic solution was straightforward, it required the students to
think about estimation in a different way, and tap properties of the normal distribution. The empirical
solution provided a glimpse into the additional variability of the IQR estimator compared to the standard
estimator of standard deviation. A full analytic solution for this problem was beyond the scope of the
course, but can be undertaken for specific values of n.

5.5 Assessing robustness of chi-square statistic to small cell counts

Perform a simulation study on the sensitivity of the χ2 test for the uniform distribution to expected cell
counts below 5. Simulate the distribution of the test statistic for 16 and 64 observations from a uniform
distribution using 8 equal-length bins (from Nolan & Speed (2000)).

5.5.1 Solution

We know that the chi-square test is recommended only in situations where the expected cell count is 5
or more in each cell. In this simulation study, we generate repeated samples from the null distribution
and compare these to the large-sample distribution of the chi-square (χ2) statistic (see Figure 8). We
know that in this setting, the appropriate degrees of freedom are equal to the number of bins minus
1. The main work is done using the simchisq() function, which generates data from a continuous
uniform variable, then constructs the observed and expected cell counts and the chi-square statistic. This
is repeated for the two scenarios and displayed in Figure 9. We see that the observed distribution under
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simchisq = function(n, bins) {
vals = cut(runif(n, 0, bins), breaks=0:bins)
obs = c(table(vals))
exp = c(rep(n/bins, bins))
return(sum(((obs - exp)ˆ2)/exp))

}
library(mosaic); par(mfrow=c(1, 2))
bins = 8; n = 16 # Expected count per cell equal to 2
res = do(10000)*simchisq(n, bins)
plot(density(res$result), main="", lwd=2,

xlab=paste("N=",n,", ",bins," bins", sep=""), xlim=c(0, 20))
curve(dchisq(x, bins-1), 0, max(res$result), add=TRUE, lwd=2, lty=2)

n = 64 # Expected count per cell equal to 8
res = do(10000)*simchisq(n, bins)
plot(density(res$result), main="", lwd=2,

xlab=paste("N=",n,", ",bins," bins", sep=""), xlim=c(0, 20))
curve(dchisq(x, bins-1), 0, max(res$result), add=TRUE, lwd=2, lty=2)

Figure 8: R code to carry out simulation study (chi-square problem)

the null is somewhat jumpy (due to the discreteness of the possible values) when the expected cell counts
are low (left figure), and that the observed curve is quite similar to the chi-square distribution when the
expected cell count is 8 (right figure).

5.5.2 Commentary

This problem was intended to provide more practice in the construction of simulation studies as well as
introduce new idioms related to looping and writing of functions. It also serves to highlight the impor-
tance of assumptions and the idea of sampling under the null distribution (as a precursor to resampling
based inference). This was included with a group of problems mid-way through the class as the nature
and properties of tests of hypotheses along with sampling distributions under the null were explored.
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Figure 9: Observed and expected distribution for chi-square statistic
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