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The recent growth of data science has been remarkable.  Analysts now have rich data 5	
and powerful computational tools to help answer important questions.  Examples of 6	
ways that insights can be wrangled from this information abound in diverse areas.  This 7	
has led some to dub computational thinking (or fluency) as the "new literacy" on par with 8	
writing and quantitative skills.  A major unanswered question relates to the role of 9	
mathematics in the training of future data scientists.  How can we be sure that data 10	
science is on a firm mathematical and statistical foundation?  In the article, we will 11	
consider what courses in mathematics would best prepare future data scientists. 12	
 13	
Background and brief history 14	
 15	
Some institutions have responded to the development of data science by creating 16	
innovative new programs.  At the University of California, Berkeley the Data 8 17	
introductory course (http://data8.org/) is now offered to a large proportion of incoming 18	
students, with connector courses on topics such as genomics, neuroscience, cultural 19	
data, social data, demography, smart cities, ethics, and social networks (as well as 20	
courses in statistics and mathematics).  Many (most?) other four-year colleges and 21	
universities are responding with their own initiatives. 22	
 23	
While data science is often described as a new discipline, those in the mathematical 24	
sciences have been engaged with data science for decades.  In a widely referenced call 25	
to action, Donoho (2017, in press), quotes noted statistician John Tukey from 1962 who 26	
presaged "an as-yet unrecognized science, whose subject of interest was learning from 27	
data, or 'data analysis' ".  In his paper, Donoho describes the history of data science as a 28	
new field and speculates about a future that brings together statistics and machine 29	
learning by marrying computational and inferential methods.  His proposed "Greater 30	
Data Science" (GDS) includes six main divisions (see Table 1). 31	
 32	
INSERT TABLE 1 AROUND HERE 33	
 34	
Table 1: David Donoho's Six Main Divisions for a "Greater Data Science" (Donoho, 35	
2017) 36	

1. Data exploration & preparation: addresses the 80% (or more) of data wrangling 37	
needed prior to analysis 38	

2. Data representation and transformation: including modern databases and special 39	
types of data 40	

3. Computing with data: multiple environments, high-performance computing, and 41	
workflow 42	

4. Data visualization and presentation: as a way to explore and present results in 43	
static or dynamic form 44	

5. Data modeling: including both generative (stochastic model) and predictive 45	
(modern machine learning)  46	

6. Science of data analysis: described as one of the most complicated of all 47	
sciences 48	

 49	
What mathematical preparation do future data scientists need?  50	
 51	
What training is needed for data scientists to be able to extract meaning from data?  This 52	
question is the topic for discussion by several working groups of the National Academy 53	
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of Sciences as well as a working group from the 2016 Park City Mathematics Institute.  54	
The potential for missteps, overgeneralization, and inferential errors abound.  One of the 55	
challenges in training the next generation of students to 'think with data' is to ensure that 56	
they have sufficient background in the mathematical sciences to provide a firm 57	
foundation for their future work in data science.   58	
 59	
Unfortunately, many new data science programs have arisen that provide little or no 60	
formal preparation in the theoretical (mathematical, statistical and computational) 61	
underpinnings of this new field.  While data science programs should appropriately focus 62	
on applications and practice, underlying many approaches is the use of modeling, a 63	
topic very familiar to the mathematical sciences, and abstraction, which underlies 64	
modern mathematics, statistics, and computational science.  Practitioners need to 65	
understand when methods are applicable, where they are robust to underlying 66	
assumptions, and the potential for misbehavior.  The danger is that students who skip 67	
out on math completely run the peril of "black box thinking", with no understanding of the 68	
uncertainties and limitations of models and algorithms.  We argue that key concepts in 69	
statistics and mathematics undergird data science and that these essential aspects are 70	
needed as a foundation for data science.  Additionally, we believe that mathematicians 71	
should take on the mantle of being directly involved in curricular decisions with respect 72	
to new data science programs. 73	
 74	
What kind of training in mathematics would be ideal for a future data scientist?  It is not, 75	
we argue, the same training as would be ideal for a future mathematician.  The proposal 76	
we outline below (two new courses on mathematics for data scientists) creates a path for 77	
integration of mathematics into data science. These new courses would not replace 78	
existing paths, since different preparation is needed for students who will be pursuing 79	
graduate degrees in mathematics.   80	
 81	
A gathering of computer scientists, statisticians, and mathematicians assembled at Park 82	
City Mathematics Institute (PCMI) during the summer of 2016 to propose guidelines for 83	
the discipline of Data Science (De Veaux et al, 2017).  The group suggested that data 84	
science majors would indeed be well prepared by three semesters of calculus (including 85	
single and multivariable), Linear Algebra, Discrete Math, and Probability (in addition to 86	
several courses in statistics).  They also noted, however, that such a course progression 87	
is not feasible for all students: it is not realistic for students to build a mathematical 88	
foundation that consists of such a long string of prerequisite courses before starting 89	
courses within their own “data science” curriculum (even if space could be made, the 90	
leakiness of lower-division pathways is a continuing problem, see 91	
http://www.tpsemath.org/).  92	
 93	
Project INGeniOuS (Investing in the Next Generation through Innovative and 94	
Outstanding Strategies, http://www.maa.org/programs/faculty-and-95	
departments/ingenious) focused on ways that the mathematical sciences could help 96	
prepare the next generation of STEM students (at the same time that the mathematical 97	
sciences remained a vibrant choice for students).  The joint report by the AMS, MAA 98	
(Mathematical Association of America), SIAM (Society for Industrial and Applied 99	
Mathematics), and the ASA (American Statistical Association) highlighted the 100	
importance of alternative curricular pathways and new approaches to teaching to ensure 101	
that the mathematical sciences are not left out of the growth of data science and other 102	
innovative interdisciplinary programs: "Curricula in the mathematical sciences 103	
traditionally aim toward upper-level majors’ courses focused on theory.  Shorter shrift is 104	
usually given to applications that reflect the complexity of problems typically faced in BIG 105	
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(Business/Industry/Government) environments, and to appropriate uses of standard BIG 106	
technology tools."   107	
 108	
How can the mathematics community respond to the challenge being posed by the 109	
growth of data science?  We don’t have all the answers, but we see the mathematical 110	
sciences as a key component of a vibrant and useful data science curriculum that 111	
provides students with a solid theoretical foundation.  We suggest that the solution is to 112	
make changes to the mathematics and data science curricula to give future data 113	
scientists a glimpse into the power of mathematics and statistics for modeling and 114	
understanding a larger quantitative framework. Our fear is that the important 115	
mathematical foundational ideas will get lost if alternate pathways are not developed.   116	
 117	
Mathematics preparation 118	
 119	
What then, is needed in terms of mathematical preparation?  In order for students to be 120	
able to function effectively in the world of data science, we believe that that mathematics 121	
departments new to consider developing additional entry points as service courses.   122	
 123	
We propose two new courses - one discrete and one continuous (other approaches with 124	
similar pedagogic goals would also be natural to consider) that intertwine abstraction, 125	
modeling, and problem-solving.  The idea of two new courses comes directly from the 126	
PCMI report:  127	
 128	

Mathematically speaking, the emphasis of an undergraduate data science 129	
degree should be on choosing, fitting, and using mathematical models. Because 130	
data-driven problems are often messy and imprecise, students should be able to 131	
impose mathematical [ideas] on [data science] problems by developing 132	
structured mathematical problem-solving skills. Students should have enough 133	
mathematics to understand the underlying structure of common models used in 134	
statistical and machine learning as well as the issues of optimization and 135	
convergence of the associated algorithms. Although the tools needed for these 136	
include calculus, linear algebra, probability theory, and discrete mathematics, we 137	
envision a substantial realignment of the topics within these courses and a 138	
corresponding reduction in the time students will spend to acquire them. 139	
 140	

Proposed New Course 1 (Mathematical Foundations I: Discrete Mathematics):   141	
 142	
The first proposed mathematics course formalizes the connections between 143	
mathematics and discrete model building (which leads naturally to more sophisticated 144	
topic and extensions in terms of continuous distributions, multivariate relationships, and 145	
causal inference).  Combinatorial techniques can provide concrete pathways for 146	
explicitly conceptualizing models and their limitations.  Linear algebra allows ideas of 147	
multivariate relationships, including independence.   Many computer science 148	
departments teach a discrete course in their own departments.  We suggest that those 149	
courses often focus more on algorithms as opposed to our suggestion that discrete 150	
models be used to conceptualize and model actual data and real world scenarios (and 151	
further develop the ability to problem solve using mathematics).  152	
 153	
The discrete topics suggested below would help the data scientist communicate about 154	
the multivariate problems they will inevitably encounter on a regular basis.  Key discrete 155	
mathematical topics that would help a data scientist to model data effectively include: 156	

• Linear algebra (ideas of independence / invertibility, Markov models and 157	
eigenvalues) 158	
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• Counting principles (understanding of first principles related to randomness)  159	
• Computational (discrete) simulations associated with continuous models 160	
• Graph theory (understand confounding, causal inference and analysis of network 161	

data) 162	
 163	

Proposed New Course 2 (Mathematical Foundations II: Continuous Mathematics):   164	
 165	
 A key aspect to modeling in data science is optimization.  Part of what makes a model 166	
appropriate has to do with its boundaries, maximal values, and sensitivity to parameter 167	
choices -- all features that use mathematical optimization.  In statistics, one foundational 168	
method is to find parameter estimates by maximizing the relevant 169	
likelihood.  Alternatively, in other mathematical models, the goal might be nonlinear 170	
state-space system identification.  In both cases, a solid foundation of calculus, 171	
differential equations, and numerical methods techniques will allow the data scientist to 172	
solve the problem at hand.  However, we argue that understanding how to find simple 173	
minima and maxima (with ideas of local and global) acts as a vehicle for understanding 174	
what optimization means at a fundamentally intuitive level.  We recognize that the ideas 175	
below are typically taught across many semesters.  We are suggesting that much of the 176	
content will be removed or taught differently so as to emphasize the critical mathematical 177	
components necessary for data science.  (For a model of such a course, see MATH 135, 178	
Applied Calculus, taught at Macalester College to a large fraction of the undergraduate 179	
population.) 180	
 181	
To this end, the continuous mathematics course we suggest focuses on understanding 182	
the continuous mathematical ideas necessary for problem solving.  Some key topics to 183	
be incorporated into such a course might include: 184	

• Functions and basic mathematical logic 185	
• Enough calculus to understand the ideas of partial derivatives (interactions in a 186	

model) 187	
• Taylor expansion method of approximating functions 188	
• Probability as area / integration 189	
• Multivariate thinking (functions, optimization, integration) 190	

 191	
The importance of computing 192	
 193	
To be relevant to the broader data science curriculum, the proposed mathematics 194	
courses need to be heavily infused with computing.   As the MAA CUPM guidelines 195	
recommend, mathematics students should not only learn to use technological tools 196	
(Cognitive Recommendation 3) but the mathematics programs should include methods 197	
which promote data analysis, computing, simulation, and mathematical modeling 198	
(Content Recommendation 3).  We believe that their recommendations are even more 199	
important for future data scientists. 200	
 201	
One aspect of integrating computing into the mathematics curriculum is a plea for 202	
mathematicians to connect more with computer scientists.  If the computer scientists 203	
believe that mathematicians care only about theory (without understanding the 204	
challenges in the real world), it will be difficult to have a two-way exchange of information 205	
across the fields.  Indeed, we believe that the computing world would do well to embrace 206	
theoretical constructs; but this will only come when the mathematical world is willing to 207	
embrace computation. 208	
 209	
Integrating computing into the mathematics curriculum not only serves students by 210	
giving them computational skills, but additionally, technology in the mathematics 211	
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classroom allows students to understand the mathematical theory more completely.  As 212	
the CUPM guidelines state: 213	
 214	

In courses at all levels, substantial and realistic applications involve “messy” 215	
mathematics that makes calculation by hand onerous or infeasible.  Using 216	
technology opens the door for students to set up solution strategies, justify their 217	
analyses, and interpret the results. 218	

 219	
Using computational skills to simulate produces a deeper understanding of the model 220	
and complements analytic solutions.  Additional computing will help develop better 221	
problem-solvers (and may yield additional mathematics majors drawn to the power and 222	
beauty of what they see in these courses).   223	
 224	
While this article focuses on mathematical preparation, we believe that statistical 225	
preparation is also critically important.  In recent years, the statistics community has 226	
taken on the challenge to improve their existing curriculum in order to ensure that 227	
statistical courses incorporate theoretical concepts, computation, and statistical practice 228	
(see for example the revised "Guidelines for Assessment and Instruction in Statistics 229	
Education [GAISE] College" report (ASA GAISE working group, 2016) (and the ASA 230	
revised "Guidelines for Undergraduate Programs in Statistics" (ASA Curriculum 231	
Guidelines working group, 2014).  The latter report recommends that introductory and 232	
intermediate statistics courses (1) be an integral part of a data science curriculum, (2) 233	
incorporate reproducible research using statistical software (e.g., R Studio, Python 234	
notebooks, or GitHub), (3) use modern and relevant real data, possibly obtained through 235	
data scraping.  While more work is needed by the statistics community, the article at 236	
hand primarily discusses the data science curriculum with respect to foundational 237	
courses in mathematics.   238	
 239	
Closing thoughts 240	
 241	
We see the world of data and modeling changing quickly.  As mathematicians (and 242	
statisticians) we need to be proactive about what our disciplines have to offer.  243	
Mathematics will be better off if it is part of the solution.  Data Science will be on a better 244	
foundational footing if it starts with mathematical first principles: abstraction and 245	
modeling.   From students for many years, we understand at a visceral level how difficult 246	
it is for undergrads to grasp the benefits of generality and abstraction.  Ensuring that 247	
they see the mathematical conceptual framework early and often will help make for 248	
better data scientists. In addition, abstraction is a key component of computer science 249	
and important linkages can be made.   250	
 251	
We argue that mathematics needs to meet the growing data science community halfway 252	
so that the analysis and models leverage vital foundational mathematical concepts.  If 253	
not, we run the risk that math will be left out.  We have proposed one pathway to provide 254	
mathematical sophistication for beginning data scientists.   255	
 256	
Our deliberately provocative suggestions, which build on the PCMI guidelines and the 257	
supplementary material therein, will not necessarily be easy to implement for many 258	
mathematics departments, given multiple competing interests and limited resources.  259	
However, we implore the community of mathematicians to take our suggestions 260	
seriously and engage in curricular discussions at their institutions so as to provide a 261	
strong theoretical framework to the world of data science and ensure that mathematics is 262	
not left behind. We look forward to working with our colleagues to develop multiple 263	
alternative approaches along the lines of those outlined by the Park City group in 2016. 264	
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