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Abstract Analysis of circadian oscillations that exhibit variability in period or 
amplitude can be accomplished through wavelet transforms. Wavelet-based 
methods can also be used quite effectively to remove trend and noise from time 
series and to assess the strength of rhythms in different frequency bands, for 
example, ultradian versus circadian components in an activity record. In this 
article, we describe how to apply discrete and continuous wavelet transforms to 
time series of circadian rhythms, illustrated with novel analyses of 2 case studies 
involving mouse wheel-running activity and oscillations in PER2::LUC 
bioluminescence from SCN explants.

Key words wheel running, SCN, period variability, amplitude variability, frequency 
bands, discrete wavelet transform, analytic wavelet transform

Circadian rhythms are characterized by approximately 
24-hour cycles of some observable variables such as 
locomotor activity or clock gene expression. The period 
of some rhythms can be quite precise, for example, the 
cyanobacteria Synechococcus elongatus (Mihalcescu et al., 
2004), but circadian oscillations can also exhibit 
considerable variability in period and amplitude over 
time. Here, we describe cases where period and/or 
amplitude vary over time and for which wavelet analysis 
provides a means to describe aspects of the data that 
cannot be obtained through more traditional methods. 
Wavelet transforms can be applied to directly measure 
period and amplitude as they vary over time in an 
activity record or bioluminescence time series. 
Alternatively, they can be used to eliminate noise and 
trend from time series to facilitate estimation of phase 
markers such as peak time. Wavelet methods can also 
be used to assess the strength of signal components lying 
in different frequency bands, for example, ultradian 
versus circadian components of an activity record. In 
this article, we provide a full description of this new 

approach with information that will allow researchers 
with similar requirements to apply wavelet analysis to 
their data.

Wavelet analysis has been previously applied to the 
field of chronobiology in a few instances, for example, 
to study ultradian activity rhythms (Poon et al., 1997; 
Chan et al., 2000) and to decompose Drosophila mating 
songs (Dowse, 2009). Price et al. (2008) and Baggs et 
al. (2009) used continuous wavelet transforms with 
ridges to analyze cell luminescence data. Etchegaray 
et al. (2010) used a similar wavelet analysis to analyze 
regulation of circadian period length by casein kinase 
1δ in mouse SCN neurons. Meeker et al. (2011) applied 
wavelet analysis to analyze period instability in SCN 
neurons. Here, we provide further examples to 
demonstrate cases where this approach is helpful, and 
we provide background and methods directed toward 
the circadian researcher new to the application of 
wavelet analysis. Technical material is separated from 
the main text into 4 boxes: Box 1 describes nonstationary 
signals, Box 2 briefly reviews Fourier analysis of time 
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Box 1. Nonstationary Signals

Sinusoids are the canonical periodic signals. For example, the signal

x( )t A t t = cos ( - )0
2π
τ


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
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oscillates with frequency 2π/τ, equivalent to a period of τ, has amplitude A, and peaks at time t0 (and every τ time units thereafter). 
In contrast, the period and amplitude of nonstationary signals vary over time. An oscillatory signal that may vary in amplitude 
and frequency over time has generic form
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varies around a central frequency of 2π/τc by ±∆f every τm time units. The instantaneous frequency of such signals is the derivative 
θ′(t) of the phase function. In the case of a fixed frequency signal with θ(t) = 2πt/τ, the derivative is 2π/τ, and so the instantaneous 
frequency agrees with the usual definition of frequency. We can also vary the amplitude a(t) over time, for example,
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See chapter 4 of Mallat (2009) for more details.

Box 2. The Discrete Fourier Transform (DFT)

A central objective of discrete Fourier and wavelet analysis is to express a signal as a sum of waveforms. Fourier analysis 
utilizes cosines and sines of different frequencies, conveniently expressed mathematically as e2πikt = cos2πkt + isin2πkt, where 
i = −1 . Suppose a signal x = {xk} is created by measuring some quantity every ∆t hours for a total of N measurements labeled x0, 
x1, . . ., xN – 1, so that xn corresponds to time t = n∆t/N. The DFT coefficient Xk of x is defined to be

X x ek n
ikn N
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−
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The fast Fourier transform (FFT) is a very efficient algorithm used to compute the DFT of signals for which N is a power of 
2, but the DFT may be applied to signals of any length N. The adjusted Fourier coefficient Xk/N is the amplitude associated with 
component e2πikt; that is, the DFT allows us to decompose the original signal into a sum of sinusoidal components:
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The sinusoidal functions of Fourier analysis are excellent for determining what frequencies are present in a signal, but because 
sinusoids oscillate at a fixed frequency for all time, they cannot be used to assess how the period of a signal varies over time. Figure 
1 illustrates these ideas. For more details, see chapter 3 of Mallat (2009).

INTRODUCTION TO WAVELET ANALYSIS

Accurate determination of period length is critical 
for most circadian studies. Common techniques 
including the Fourier periodogram, sine wave fitting, 
maximum entropy spectral analysis (MESA), and 

series, Box 3 defines the discrete wavelet transform, 
and Box 4 explains the analytic wavelet transform. 
After a basic introduction describing wavelet analysis, 
we present 2 case studies to illustrate how these 
methods go beyond more traditional methods of 
analysis.
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Box 3. The Discrete Wavelet Transform (DWT)

Wavelet transforms typically involve waveforms that have finite support, that is, are nonzero on a finite length interval, in 
contrast to cosines and sines that oscillate for all time. Whereas the DFT decomposes a signal x into a sum of sinusoids at particular 
frequencies, the DWT splits x into components called wavelet details and smooths that are associated with different frequency 
bands. This is accomplished by repeatedly applying a high-pass wavelet filter (HPF) to generate wavelet coefficients Wj,k and a 
low-pass scaling filter (LPF) to generate scaling coefficients Vj,k. See Figure 2 for graphs of the wavelet and scaling filters used in 
this article.

The wavelet coefficients Wj,k yield the level j wavelet detail Dj, and the scaling coefficients Vj,k yield the level j wavelet 
smooth Sj, via application of the inverse DWT. The original signal x is the sum of the wavelet details D1, . . ., DJ plus the final 
wavelet smooth SJ, where J is the number of levels computed. Figure 2 illustrates this process for J = 3. The wavelet detail Dj 
corresponds to a frequency band with period range 2j∆t to 2j+1∆t time units, where the signal x was created by sampling every 
∆t time units. Hence, each level is associated with a scale twice as long as the previous level’s. The wavelet smooth SJ is obtained 
by repeated smoothing via the LPF and so forms the trend of the signal. Together, the wavelet details and smooth form a 
multiresolution analysis (MRA) of the signal, exemplified in Supplementary Figure S2 for bioluminescent signals. We use a 
translation-invariant DWT (also known as a stationary or maximal overlap DWT) that does not downsample like the regular 
form of the DWT.  For more information, see Percival and Walden (2000).

Box 4. The Analytic Wavelet Transform (AWT)

In contrast to the DWT that uses a pair of real-valued filters, the AWT involves a complex-valued wavelet function ψ(t) that 
corresponds to a frequency band determined by its DFT, as illustrated in Figure 3 for the Morse wavelet function. The AWT of 
a signal x(t) at time t and scale s is defined to be

W t s
s

u t
s

x u du( , ) ( ) ,= −



∫ 1ψ ∗

−∞

∞

where the asterisk denotes the complex conjugate (reverses the sign of the imaginary part). Essentially, the wavelet transform 
correlates the given signal x(t) with wavelet functions that have been translated to be centered at time t and scaled by a factor s 
(thereby altering the period). At a given time t, we identify the period of the signal by finding the scale that maximizes the wavelet 
transform (hence, the correlation) between the signal and the scaled wavelet. This is the idea behind the wavelet ridge, which 
estimates the instantaneous frequency and amplitude of the signal at each time point. Wavelet ridge curves run along local maxima 
with respect to s (for each fixed t) of the absolute value of the AWT and thereby indicate the signal’s instantaneous frequency and 
analytic amplitude at each time point, as shown in Supplementary Figure S5 for 2 examples. We use bandpass normalization, as 
described in Lilly and Olhede (2009), so that |W(t,s)| can be directly interpreted as amplitude. The transform essentially finds the 
correlation between the signal and the wavelet function, and the ridge curve identifies the waveforms that have the greatest 
correlation with the signal. The scale s can be interpreted as frequency via ω = ϕ/s or as period via τ = 2πs/ϕ, where ϕ is the mean 
frequency of the wavelet function ψ(t). The AWT also yields phase information because each complex number z = reiθ encodes both 
amplitude r and phase angle θ.

Another way to understand what the AWT does is to examine the transform’s action in the frequency domain, in the same 
way we examine how filtering works in Supplementary Figure S1. We can reformulate the definition of W(t,s) to work in the 
frequency domain rather than in the time domain:

W t s
s

s X e di t( , ) ( ) ( ) ,= ∫1
2

1
π

Ψ ω ω ω∗

−∞

∞
ω 

where X(ω) and Ψ(ω) are the Fourier transforms of x(t) and ψ(t), respectively. This says that the AWT is in effect
 
multiplying the 

signal’s frequency spectrum by the wavelet function’s Fourier transform Ψ (Fig. 3). Changing s shifts Ψ(sω) along the frequency axis, 
and the ridge location corresponds to the value of s that maximally matches Ψ(sω) with the signal’s frequency profile X(ω). See Lilly 
and Olhede (2010), Selesnick et al. (2005), and chapter 4 of Mallat (2009) for further information about the AWT.

autocorrelation-based methods assume that the intrinsic 
period and amplitude do not change over time, as is true 
for stationary time series. These methods yield good 
results for most experimental data when applied 
appropriately, with the best choice of method depending 

on the characteristics of the particular time series. The 
resolution of the Fourier periodogram, which is 
essentially the discrete Fourier transform (DFT), depends 
on the number of cycles contained in the data and so 
requires a relatively long record (typically at least 10 
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Figure 1. Example of the DFT applied to a simple oscillatory 
signal. We sum 2 sinusoids with periods of 7.2 hours and 23.5 
hours to obtain a signal x. The DFT coefficients’ magnitudes, 
|Xk|/N, give the amplitude of the sinusoids with frequencies k/N, 
whose sum will equal the signal x (in this example, N = 1024) (see 
Box 2). The 2 peak DFT coefficients closely match the periods and 
amplitudes of the 2 sinusoids, but with “leakage” around the peak 
frequency due to the DFT frequency corresponding to 23.3 hours, 
slightly different from the signal’s period of 23.5 hours. The 
resolution of the DFT depends on the number of cycles present 
in the signal; if the signal’s peak frequency does not exactly match 
one of the DFT’s frequencies, the DFT must use a combination of 
nearby frequencies to match the signal.

cycles). Autocorrelation yields a period estimate with 
resolution that depends on the sampling interval and is 
best applied to records with at least 4 cycles and a short 
sampling interval. MESA has finer resolution than the 
Fourier periodogram and works reasonably well even 
for short, noisy time series as long as the period and 
amplitude do not vary significantly over time.  Unlike 
the previous 3 methods, sine wave fitting is not restricted 
to a grid of periods and can be applied to short time 
series (3 or more cycles for good results), but it is more 
sensitive to variations in period and amplitude. See 
Levine et al. (2002) and Dowse (2009) for further details 
on these commonly used methods for circadian data. 

While performing well in many circumstances, 
traditional methods can be unreliable when applied to 
data with significant variation in amplitude and period 
across cycles, that is, nonstationary time series (Box 1), 
and none of them measures how the period may be 
changing over time within a time series. Because 
circadian data are often nonstationary (Refinetti, 2004), 
these traditional methods may be inadequate in some 
cases, and wavelet-based approaches may prove more 
effective for determining period length as well as 

offering a means of measuring variability in period and 
amplitude within a time series. 

Wavelet analysis, similar to Fourier analysis, attempts 
to express a signal as a sum of component waveforms. 
Whereas the waveforms in Fourier analysis are sines 
and cosines of a set of fixed frequencies (Box 2 and Fig. 
1), wavelet transforms allow us to decompose a signal 
in a more flexible manner. In addition to being the 
method of choice for analyzing nonstationary time 
series, wavelet analysis has some advantages over 
traditional methods; for example, wavelet methods do 
not require removal of noise or trend to accurately 
measure period. In fact, the discrete wavelet transform 
(DWT) can itself be a very effective tool to remove trend 
and noise from a time series by focusing on a desired 
frequency band, thereby facilitating clear and accurate 
identification of phase markers such as peaks. The DWT 
decomposes a time series into components corresponding 
to different frequency bands in a time-localized manner 
(Box 3, Fig. 2, and Suppl. Fig. S2), thereby isolating the 
circadian component to effectively remove trend and 
noise (Suppl. Fig. S3) as well as partitioning the variance 
of a time series according to the frequency band (Suppl. 
Fig. S4). In contrast, a type of complex-valued continuous 
wavelet transform called the analytic wavelet transform 
(AWT) directly measures period and amplitude varying 
over time in a time series (Box 4).

Wavelet functions are not periodic, so each wavelet 
function involves a band of frequencies rather than a 
single frequency, as illustrated in Figure 3. In switching 
from Fourier analysis, with its precise frequency 
determination but lack of time localization, to wavelet 
analysis, we gain time localization at a cost of some loss 
of precision in frequency. Because of this “smearing” of 
frequency content in wavelet functions, we refer to the 
scale of a wavelet. Each scale corresponds to a frequency 
band rather than to a single frequency. Large scales 
correspond to low frequencies (equivalently, long periods) 
and can be associated with the general trend of a signal, 
while very small scales correspond to high frequencies 
and are often associated with high-frequency noise. 

The underlying idea behind using wavelet transforms 
like the AWT to measure period is as follows: Take a 
wavelet filter (for a discrete transform) or a wavelet 
function (for a continuous transform), and translate it 
along the time axis to center it at the time point of 
interest. Rescaling the wavelet allows us to assess a wide 
range of frequencies. Compute the correlation between 
each rescaled wavelet and the time series, and choose 
the scale that yields the largest correlation. We associate 
this scale with the mean frequency of the scaled wavelet’s 
frequency band, thereby allowing us to assign a period 
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for examining phase markers such as 
peaks, for example, in bioluminescence 
time series. In this manner, the DWT can 
enhance commonly used methods such as 
peak picking or sine wave fitting by 
optimally removing noise and trend from 
time series, as shown in Supplementary 
Figure S3. The MRA also partitions the 
energy of the signal with respect to scale, 
which can be used to characterize a rhythm 
or as a rhythmicity criterion by assessing 
what proportion of the rhythm’s energy 
lies in a circadian range. Energy in this 
context equals the variance of the 
detrended time series; see Supplementary 
Section S.2 for a rigorous definition and 
Supplementary Figure S4 for cell data 
examples. Strong, coherent circadian 
rhythms are characterized by their energy 
being concentrated in the frequency band 
containing the period of the rhythm. This 
is analogous to how Ko et al. (2010) used 
the DFT to generate a rhythmicity criterion 
for SCN neurons by examining the 
proportion of power in the peak circadian 
frequency. 

Wavelet transforms are powerful tools 
for assessing rhythmic data, but like the Fourier transform, 
they must be applied properly to yield valid results. Both 
Fourier and wavelet methods require time series to be of 
a minimum length to estimate period with good precision. 
A particular issue with wavelet transforms and other 
filtering methods is that of edge effects (distortions in the 
transformed or filtered signal near its beginning and end). 
When a wavelet transform is applied at a time t that is 
near the beginning or end of a time series, the wavelet 
function or filter runs off the edge, and we must choose 
a way of extending the time series to fully overlap. 
Common choices are to pad each end with zeros or with 
the mean value of the time series. Other choices that can 
reduce edge effects are to apply periodic boundary 
conditions (joining the ends to wrap around) or reflection 
boundary conditions (reflecting about each end) after 
adjusting the time series to start and end at peaks or 
troughs. A consequence of artificially extending the time 
series in any of these ways is that the wavelet transform 
will be distorted near the edges. It is best to ignore regions 
exhibiting edge effects, typically at least 1.5 days on each 
end for frequencies in the circadian range, unless careful 
measures are taken to minimize boundary distortions. 
This implies that the data series must cover substantially 
more than 3 days for wavelet methods to be useful in 
measuring circadian periods.

HPF
{ xk } = { V0,k }

{ W1,k }

{ V1,k  }
{ W2,k }

{ V2,k }
{ W3,k }
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Figure 2. Filters associated with the DWT and the pyramid algorithm used to 
compute the DWT. Shown here are the Daubechies least-asymmetric wavelet and 
scaling filters of length 12, along with their DFTs. The wavelet filter is a high-pass 
filter (HPF) with a DFT magnitude greatest for high frequencies, and the scaling 
filter is a low-pass filter (LPF) with a DFT magnitude greatest for low frequencies. 
In the DFT graph, frequency is given in terms of cycles per sample, where the highest 
possible discernible frequency is one cycle per 2 samples (i.e., signal alternates values 
at every other time point). The scaling filter acts by multiplying the signal’s DFT by 
the LPF DFT, thereby retaining only the low-frequency content of the signal. This 
complements the action of the wavelet filter, which multiplies the signal’s DFT by 
the HPF DFT, thereby retaining only the high-frequency content. The pair of filters 
are applied repeatedly as shown in the diagram to yield wavelet coefficients Wj,k 
(used to generate wavelet detail Dj) and scaling coefficients Vj,k (used to generate 
wavelet smooth Sj). See Box 3 for further details.

to the time series at that time point. The AWT is 
particularly good for visualizing fluctuations in period 
as well as in amplitude. The AWT coefficients indicate 
the correlation between the scaled wavelets and the time 
series at each time point, often graphed as a heat map 
with a ridge marking maxima (highest correlation), 
thereby indicating the period of the time series at each 
point, as illustrated for simple examples in 
Supplementary Figure S5. Note that as a consequence 
of the fact that wavelets are associated with a frequency 
band rather than a single frequency, the AWT will not 
distinguish frequencies that are too close relative to 
the wavelet function’s frequency spread. MESA 
(Dowse, 2009) can be applied to test whether a signal 
involves clustered frequencies, as this method can be 
effective at resolving closely spaced frequencies.

Wavelet methods have application beyond direct 
period measurement. A multiresolution analysis (MRA) 
uses the DWT to decompose a signal into components 
called details associated with different frequency bands 
and a smooth that can be treated as the trend (Box 3, Fig. 
2, and Suppl. Fig. S2). The underlying idea here is to 
repeatedly apply a wavelet filter to extract details at 
different scales, while a scaling filter smoothes the signal 
(analogous to a running average). This method can be 
used to remove noise and trend to yield a clean signal 

 at SRBR on September 23, 2011jbr.sagepub.comDownloaded from 

http://jbr.sagepub.com/


Leise, Harrington / WAVELET-BASED ANALYSIS  459  

−48 −24 0 24 48

−0.05

0

0.05

Time t (hours)

Wavelet function at scale ~ 24h

Re(ψ(t))
Im(ψ(t))

1/48 1/24 1/16
0

0.5

1

1.5

2

Frequency ω (cycles/hour)

D
F

T
 M

ag
ni

tu
de

Associated frequency band

Figure 3. Morse wavelet function (with β = 7 and γ = 3) and its 
frequency band, used in the analytic wavelet transform in this 
article. The Morse wavelet function is complex valued, that is, has 
both real and imaginary parts, allowing it to extract both amplitude 
and phase information from the signal, which real-valued 
transforms cannot do. For more details, see Box 4.

We present 2 case studies to illustrate the application 
of wavelet transforms to circadian data. Case study #1 
uses the DWT to characterize the differences between 
wheel-running rhythms in LD and LL and subsequent 
effects on SCN PER2::LUC rhythms, while case study 
#2 applies the AWT to measure period and amplitude 
modulation in wheel-running activity of a female 
mouse due to the estrous cycle.

CASE STUDY #1: WHEEL RUNNING AND 
PER2::LUC EXPRESSION IN LD AND LL

Background

Constant light disrupts circadian activity rhythms in 
mice, fragmenting activity bouts, reducing activity levels, 
and lengthening period (Daan and Pittendrigh, 1976). 
Ohta et al. (2005) reported that individual SCN neurons 
in animals housed under constant light continue 
oscillating but are desynchronized. We expected that 
constant light would provide a condition under which 
period and amplitude of the circadian rhythm would 
vary, so that this would be a case where wavelet analysis 
would allow greater insight than more traditional 
methods that assume a stationary signal. We applied 
wavelet methods to compare activity and bioluminescence 
records from mPer2Luc mice under LD 12:12 and LL 
conditions (see Fig. 4 for representative samples). 

Results

As shown in Figure 5A, activity of mice entrained to 
LD tends to be greater than activity in LL; the mean 
activity of male mice under LL is significantly different 
from that of male mice in LD and of female mice in LD 
or LL (multiple comparison test, F = 7.5, p < 0.001). To 
further characterize patterns in wheel running during 
LD and LL of male and female mice, we used the DWT 
to partition the energy between ultradian and circadian 
scales, as described in Supplementary Section S.2 and 
Supplementary Figure S4. Figure 5B shows the proportion 
of energy associated with each wavelet detail of mouse 
wheel-running MRAs (see Fig. 4B for representative 
samples). Activity in LD has most of its energy in the 
wavelet detail corresponding to a circadian range of 
periods (in this example, D6), while mice in LL display 
more fragmented activity, with energy distributed among 
the ultradian scales. Activity under LD 12:12 is 
characterized by strong consolidation, with energy in the 
wavelet detail D6 (corresponding to a circadian range of 
periods) significantly greater under LD than LL (multiple 
comparison test, F = 53, p < 0.001). In LL, female mouse 
activity is distributed among D3 to D6, while male mouse 
activity tends to be fragmented and so predominantly in 
D1 to D3. The period of activity of mice during LL was 
25.0 ± 0.3 hours (mean ± standard deviation, MESA; mean 
period of males and females not significantly different).

We measured variability in period of PER2::LUC 
luminescence rhythms of SCN explants by applying a 
DWT to remove noise and trend (Suppl. Fig. S3), allowing 
clear discernment of peak times. We then used the 
standard deviation of 5 consecutive peak-to-peak times 
as the measure of period variability for each PER2::LUC 
record. We observed more variability in period following 
LL than following LD (2-sample t test for unequal 
variances, t = 5.6, df = 18, p < 0.001) (Fig. 5C). As shown 
in Figure 5D, there is a significant negative correlation 
between period variability in the SCN explant PER2::LUC 
rhythms and the proportion of energy of wheel-running 
activity in the circadian scale (r = –0.67, p < 0.001). That 
is, greater period variability in the SCN is associated with 
more fragmenting of wheel-running activity.

Discussion

The DWT is used here for 2 different purposes: 1) 
characterizing activity by calculating the energy in 
each wavelet detail of the wheel-running time series, 
and 2) removing trend and noise from bioluminescence 
time series to allow identification of peak times for 
measuring period variability. Male mice under LL are 
significantly less active than females and also display 
greater fragmenting of activity, quantified using 
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Turek (1988) found that the highest 
amplitude and activity bout length and 
the shortest circadian period length 
occurred on the day of estrus in rats for 
both LD 12:12–entrained and free-
running animals. Estradiol shortens the 
period and advances the phase of wheel 
running in LD 12:12–entrained 
ovariectomized golden hamsters (Morin 
et al., 1977), while progesterone blocks 
the effects of estradiol on locomotor 
rhythms (Takahashi and Menaker, 1980). 
Janik and Janik (2003) found that the 
resetting of circadian rhythms through 
novel wheels can induce changes in the 
estrous cycle of Syrian hamsters. Pilorz 
et al. (2009) found that wheel-running 
activity was highest during estrus for 
wild-type and Per1 mutant female mice 
but did not vary with the stage of the 
estrous cycle for Per2 mutants, and Kopp 
et al. (2006) observed that the second part 
of the proestrous night was often 
characterized by increased activity in 
young female mice. These observed 
effects of the estrous cycle on locomotor 
patterns imply that female rodent wheel-
running records should be treated as 
nonstationary time series, and wavelet 
analysis offers a means of objectively 

quantifying the variation in period, phase, and 
amplitude that occurs during the 4- to 5-day estrous 
cycle.

Results

We examined the wheel-running record of a female 
mPer2Luc mouse that was 3 months old at the start of 
the 20-day record shown in Figure 6A. The animal was 
well entrained to the LD 12:12 cycle, as indicated by the 
Fourier periodogram (Fig. 6B) and MESA, both showing 
strong peaks at 24.0 hours. However, neither the Fourier 
periodogram nor MESA can reveal time-varying 
patterns in the period of the mouse’s activity. Therefore, 
to assess possible fluctuations in period and amplitude 
over time, we applied an AWT to the wheel-running 
record shown in Figure 6A to yield the heat map shown 
in Figure 6C. The wavelet ridge is the best estimate of 
the instantaneous frequency and amplitude of the signal 
at each point (Box 4). In Figure 6D, we observe that the 
wavelet ridge displays a systematic 4- to 5-day variation 
in period and amplitude, and Supplementary Figure S6 
shows the variation in phase angle over time.  

Figure 4. Representative examples of mice under LD 12:12 and LL conditions. (A) 
Double-plotted wheel-running records with 15-minute bins; periods were computed 
by MESA after subtracting the mean value. (B) Corresponding MRAs of the wheel-
running records in A (smooth S7 not shown); within each MRA, each detail has mean 
zero and is plotted with the same axis scaling, so magnitudes can be directly compared. 
(C) PER2::LUC bioluminescence of SCN explants from the mice whose activity 
records are shown in A, where graphs display both the raw signal and the signal 
with noise and trend removed via DWT.
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wavelet analysis. All mice from LL showed more 
fragmented rhythms than mice from LD, resulting in 
most of the energy in activity under LL occurring in 
the ultradian scales (i.e., higher frequency bands). SCN 
explants from LL mice also exhibited greater variability 
in period. The correlation between variability of period 
in the SCN and fragmenting of locomotor activity 
suggests that the fragmentation of activity under LL 
may be partly attributable to destabilized rhythms in 
the SCN, consistent with the findings of Ohta et al. 
(2005). While some of these results may be clear by 
simply looking at the records, the wavelet analysis 
facilitates an objective quantitative evaluation of, for 
example, fragmenting of rhythms and variability in 
period, which is amenable to statistical analysis and 
can be applied to a wide variety of circadian data.

CASE STUDY #2: EFFECTS OF ESTROUS CYCLE 
ON WHEEL-RUNNING RECORDS

Background

The estrous cycle can affect the phase, period, and 
amplitude of rodent locomotor rhythms. Wollnik and 
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phase, and amplitude at each time point, 
thereby providing a means of quantifying 
changes in these circadian properties over 
time. In this example, the AWT reveals 
a 4- to 5-day variation occurring in the 
amplitude, period, and phase of wheel 
running that is consistent with the 
literature concerning the effects of 
the estrous cycle on activity patterns. The 
main point of this case study is that 
the wavelet methods provide an objec-
tive way to quantify features of activity 
records such as recurring changes of 
period and amplitude. The AWT can also 
be applied to other types of circadian time 
series such as bioluminescence rhythms 
(Price et al., 2008; Baggs et al., 2009; 
Meeker et al., 2011), and a variety of 
wavelet functions are available that can 
be used to detect other types of features, 
for example, edge detection wavelets that 
can be applied to detect discontinuities 
such as activity onsets.

Although both are wavelet 
transforms, the DWT and AWT are quite 
different in nature and serve distinct 
purposes in our analyses. The DWT is 
real valued and systematically 
decomposes a signal into details and a 
smooth, which prove useful for 
removing noise and trend from a time 

series (by isolating the circadian component) and for 
characterizing rhythmicity through partitioning the 
energy with respect to scale. The effectiveness of the 
DWT in removing trend and noise can then facilitate 
other methods such as peak picking to yield period 
information, but the DWT does not itself directly 
measure period or amplitude. In contrast, the AWT 
is complex valued and can directly yield high-
resolution measurements of period, phase, and 
amplitude over time. The difference in these 
transforms is due to 2 main factors: discrete versus 
continuous and real valued versus complex valued. 
The DWT is a discrete transform designed to output 
components corresponding to fixed frequency bands 
that exactly add up to the original signal, while the 
AWT is a continuous transform that scans a range of 
possible period values in order to determine the best 
estimate. Real-valued transforms cannot encode both 
phase and amplitude, as complex-valued transforms 
can due to the combination of real and imaginary 
parts (Box 4). Each approach has its advantages and 
drawbacks. The AWT, for example, tends to 
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Figure 5. (A) Mean wheel-running activity under LD and LL conditions for male 
and female mice. Bars show mean ± standard error. (B) Scale-based characterization 
of wheel-running activity under LD 12:12 and LL for male and female mice (23 LD 
12:12 females, 8 LD 12:12 males, 9 LL females, 5 LL males). Error bars indicate mean 
± standard error. (C) Period variability of PER2::LUC bioluminescence rhythms in 
SCN explants, calculated as the standard deviation of 5 consecutive peak-to-peak 
times following LL and LD conditions. Bars indicate mean ± standard error. (D) 
Graph showing PER2::LUC period variability versus the proportion of energy lying 
in the circadian component (wavelet detail D6) of wheel-running activity. A low 
proportion of energy in the circadian component of wheel running indicates 
fragmented activity patterns.

While the scalloping of activity can be discerned 
by the eye in some cases, the AWT provides a means 
of objectively quantifying the variation over time of 
period, amplitude, and phase that is associated with 
the 4- to 5-day estrous cycle. For example, Figure 6C 
suggests that the amplitude tends to be greatest 
while the period is growing shorter. We can use the 
wavelet ridge to more precisely quantify the 
relationship between period and amplitude variation. 
Autocorrelation yields a period of 4.1 days for the 
period and amplitude curves in Figure 6D, with the 
period rhythm leading the amplitude rhythm by 0.7 
days. That is, the shortest period occurs about 0.7 
days before the minimum amplitude. Similar 
patterns can be observed in the examples shown in 
Supplementary Figure S7.

Discussion

The AWT facilitates visualization as well as 
quantification of variation in period and amplitude 
over time. The wavelet ridge curve indicates the period, 
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Data Analysis

For case study #1, we applied a 
translation-invariant DWT to wheel-
running records with 15-minute bins, 
using periodic boundary conditions and 
starting and ending in the middle of rest 
intervals to minimize edge effects. We 
chose the Daubechies least-asymmetric 
filter of length 12 after verifying that longer 
length filters did not alter the scale energy 
estimates. We observed that shorter filters 
reduce edge effects but can yield distorted 
energy estimates. We also applied this 
DWT to PER2::LUC bioluminescence time 
series (10-minute time steps) to extract the 
circadian component (sum of D6 and D7, 
covering a period range of 11-43 hours) 
and then used this to determine times of 
peak luminescence in SCN explants for 
use in calculating period variability. For 
case study #2, we applied the AWT using 
a Morse wavelet function with β = 7 and 
γ = 3. We chose the Morse wavelet rather 
than the Morlet wavelet used by Price 
et al. (2008), Baggs et al. (2009), Etchegaray 
et al. (2010), and Meeker at al. (2011) 
because it has some technical advantages 
over the Morlet wavelet (Lilly and Olhede, 

2010). We discarded 1.5 days from each end of the AWT 
coefficients to avoid edge effects. For assessment of 
overall period in activity rhythms, we applied MESA to 
the raw 15-minute binned wheel-running data after 
subtracting the mean.

Wavelet Software

Publicly available sources of wavelet analysis software 
to calculate the AWT (including ridges) are the waveclock 
package for the statistical program R (Price et al., 2008), 
which uses the Morlet wavelet and is aimed specifically 
at clock data, and the jlab package for MATLAB (Lilly, 
2010), which includes a wider set of options and choice 
of Morlet or Morse wavelets. Free toolboxes of MATLAB 
scripts for the DWT and translation-invariant DWT 
include the wmtsa package written by Charles R. Cornish 
as a companion for Percival and Walden (2000) and the 
WaveLab package developed by a group at Stanford 
University (Buckheit et al., 2005). Data analysis in this 
article was done with custom scripts run in MATLAB 
7.11.0 (The MathWorks, Natick, MA) that call routines 
from the wmtsa package and from jlab. For sample 
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Figure 6. (A) Wheel-running activity of a young female mouse, double plotted with 
15-minute bins, ranging from 0 to 1200 revolutions per bin. (B) Fourier periodogram 
of this wheel-running record. (C) Analytic wavelet transform of the wheel-running 
record. Color scale indicates amplitude of the activity rhythm (absolute value of 
AWT coefficients along the ridge, in wheel revolutions per 15-minute bin); double 
this value to obtain the peak activity level in units of wheel revolutions per 15-minute 
bin. (D) Replotted wavelet ridge curve showing period over time together with the 
corresponding amplitude, showing the relationship between the 5-day variation in 
period and amplitude of wheel running for this mouse. See Supplementary Figure S6 
for a plot of the phase angle over time.

underestimate period variations because it essentially 
averages over several cycles, whereas the DWT/
peak-picking method can yield accurate period variability 
estimates (as used in case study #1). See Selesnick et al. 
(2005) for an excellent discussion contrasting the DWT 
with complex-valued wavelet transforms.

MATERIALS AND METHODS

Experimental Data

Mice (mPer2Luc, both homozygous and heterozygous) 
were housed from birth under constant light or under 
LD 12:12 in standard group housing. At 6 weeks of 
age, mice were moved to individual cages with running 
wheels, and activity was monitored for 2 to 3 weeks. 
Mice were then euthanized with halothane anesthesia, 
and SCN tissue was cultured as described in Guenthner 
et al. (2009), with bioluminescence monitored using 
Lumicycle (Actimetrics, Wilmette, IL). The female 
mouse (mPer2Luc heterozygous) analyzed in case study 
#2 was housed with a running wheel under a LD 12:12 
cycle.
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MATLAB scripts applying wavelet analysis to circadian 
datasets and links to MATLAB-based wavelet toolboxes, 
go to http://www.cs.amherst.edu/~tleise/Circadian 
WaveletAnalysis.html.

ACKNOWLEDGMENTS

The authors gratefully acknowledge John Davis 
(Dean of Academic Affairs, Smith College) and Gregory 
Call (Dean of Faculty, Amherst College) for funding 
undergraduates to work on this research, including 
Yordanka Kovacheva and Rose Weisshaar, who 
assisted in testing AWT methods in MATLAB, and 
Kayla Correia, who assisted with selecting data files. 
The authors thank Penny Molyneux for her assistance 
with the animal experiments and funding from the 
National Science Foundation (1051716) and the 
National Institutes of Health (00232373).

CONFLICT OF INTEREST STATEMENT

The author(s) have no potential conflicts of interest 
with respect to the research, authorship: and/or 
publication of this article.

NOTE

Supplementary material for this article is available 
on the Journal of Biological Rhythms website at http://
jbr.sagepub.com/supplemental.

REFERENCES

Baggs JE, Price TS, DiTacchio L, Panda S, Fitzgerald GA, 
and Hogenesch JB (2009) Network features of the 
mammalian circadian clock. PLoS Biol 7:e52.

Buckheit J, Chen S, Donoho D, Johnstone I, and Scargle J 
(2005) WaveLab 850. Available from: http://www-stat 
.stanford.edu/~wavelab.

Chan FHY, Wu BM, Lam FK, Poon PWF, and Poon AMS 
(2000) Multiscale characterization of chronobiological 
signals based on the discrete wavelet transform. IEEE 
Trans Biomed Eng 47:88-95.

Daan S and Pittendrigh CS (1976) A functional analysis of 
circadian pacemakers in nocturnal rodents. J Comp 
Physiol 106:267-290.

Dowse HB (2009) Analyses for physiological and behavioral 
rhythmicity. In Methods in Enzymology Vol. 454, Johnson 
ML and Brand L, eds, pp 141-174. Burlington, MA: 
Academic Press.

Etchegaray J-P, Yu EA, Indic P, Dallman R, and Weaver DR 
(2010) Casein kinase 1 delta (CK1δ) regulates period 
length of the mouse suprachiasmatic circadian clock in 
vitro. PLoS One 5(4):e10303.

Guenthner CJ, Bickar D, and Harrington ME (2009) Heme 
reversibly damps PERIOD2 rhythms in mouse supra-
chiasmatic nucleus explants. Neuroscience 164:832-841.

Janik LY and Janik D (2003) Nonphotic phase shifting in 
female Syrian hamsters: interactions with the estrous 
cycle. J Biol Rhythms 18:307-317.

Ko CH, Yamada YR, Welsh DW, Buhr ED, Liu AC,  
Zhang EE, Ralph MR, Kay SA, Forger DB, and Takahashi 
JS (2010) Emergence of noise-induced oscillations in the 
central circadian pacemaker. PLoS Biol 8(10):e1000513.

Kopp C, Ressel V, Wigger E, and Tobler I (2006) Influence of 
estrus cycle and ageing on activity patterns in two inbred 
mouse strains. Behav Brain Res 167:165-174.

Levine JD, Funes P, Dowse HB, and Hall JC (2002) Signal 
analysis of behavioral and molecular cycles. BMC 
Neuroscience 3(1):1.

Lilly JM (2010) JLAB: MATLAB freeware for data analysis, 
version 0.91. Available from: http://www.jmlilly.net/
software.html.

Lilly JM and Olhede SC (2009) Higher order properties of 
analytic wavelets. IEEE Trans Signal Process 57:146-160.

Lilly JM and Olhede SC (2010) On the analytic wavelet 
transform. IEEE Trans Inf Theory 56:4135-4156.

Mallat S (2009) A Wavelet Tour of Signal Processing: The Sparse 
Way. Burlington, MA: Academic Press.

Meeker K, Harang R, Webb AB, Welsh DK, Doyle FJ, Bonnet G, 
Herzog ED, and Petzold LR (2011) Wavelet measurement 
suggests cause of period instability in mammalian 
circadian neurons. J Biol Rhythms 26:353-362.

Mihalcescu I, Hsing W, and Leibler S (2004) Resilient 
circadian oscillator revealed in individual cyanobacteria. 
Nature 430:81-85.

Morin LP, Fitzgerald KM, and Zucker I (1977) Estradiol 
shortens the period of hamster circadian rhythms. 
Science 196:305-307.

Ohta H, Yamazaki S, and McMahon DG (2005) Constant 
light desynchronizes mammalian clock neurons. Nat 
Neurosci 8:267-269.

Percival DB and Walden AT (2000) Wavelet Methods for Time 
Series Analysis. New York: Cambridge University Press.

Pilorz V, Steinlechner S, and Oster H (2009) Age and oestrus 
cycle-related changes in glucocorticoid excretion and 
wheel-running activity in female mice carrying 
mutations in the circadian clock genes Per1 and Per2. 
Physiol Behav 96:57-63.

Poon AMS, Wu BM, Poon PWF, Cheung E, Chan F, and Lam 
FK (1997) Effect of cage size on ultradian locomotor 
rhythms of laboratory mice. Physiol Behav 62:1253-1258.

Price TS, Baggs JE, Curtis AM, Fitzgerald GA, and 
Hogenesch JB (2008) WAVECLOCK: wavelet analysis 
of circadian oscillations. Bioinformatics 24:2794-2795.

Refinetti R (2004) Non-stationary time series and the 
robustness of circadian rhythms. J Theor Biol 227:571-581.

Selesnick IW, Baranuik RG, and Kingsbury NG (2005) The 
dual-tree complex wavelet transform. IEEE Signal 
Process Mag 22:123-151.

Takahashi JS and Menaker M (1980) Interaction of estradiol 
and progesterone: effects on circadian locomotor rhythm 
of female golden hamsters. Am J Physiol Regul Integr 
Comp Physiol 239:R497-R504.

Wollnik F and Turek FW (1988) Estrous correlated modulations 
of circadian and ultradian wheel-running activity rhythms 
in LEW/Ztm rats. Physiol Behav 43:389-396.

 at SRBR on September 23, 2011jbr.sagepub.comDownloaded from 

http://jbr.sagepub.com/


Supplementary Online Material

Wavelet-based time series analysis

of circadian rhythms

Tanya L. Leise∗ and Mary E. Harrington†

∗Department of Mathematics, Amherst College, MA 01002,USA
†Neuroscience Program, Smith College, Northampton, MA 01063, USA

1



S.1 The discrete Fourier transform and filtering

The discrete wavelet transform (DWT) is built upon filtering, so it is important to
first understand the basic idea behind circular filters. The main goal is to alter the
frequency content of a signal, typically by reducing undesired high or low frequencies.
The discrete Fourier transform (DFT) reveals the frequency content of a signal, which
can then be altered by multiplication with the DFT of a filter. In the example shown
in Figure S1, the filter’s DFT is shown as a red curve centered on the peak circadian
frequency. The effect of this filter is to isolate the circadian component of the signal
by diminishing frequencies to either side of the desired frequency. See the caption
to Figure S1 for full details. In general, a filter is created by first determining its
intended effect in the frequency domain (analogous to drawing the red curve in Figure
S1), and then applying an inverse DFT to obtain the filter itself.

S.2 Applications of the discrete wavelet transform

As explained in the main text, the DWT involves two filters, a high-pass wavelet filter
that retains only high frequencies, and a low-pass scaling filter that retains only low
frequencies (see Figure 2). The pair of filters are applied repeatedly in an efficient
procedure for numerically calculating the DWT called the pyramid algorithm, leading
to a sequence of details and a final smooth that form the multiresolution analysis
(MRA), illustrated in Figure S2. Notice that the wavelet detail D7 is the circadian
component in Figure S2; in general, which detail corresponds to a circadian range of
periods is controlled by the sampling interval.

Because the DWT decomposes the signal into details and a smooth that corre-
spond to difference frequency bands, it offers an effective means of removing trend
and noise. The idea is to retain only the components of interest, which could be the
circadian component by itself (e.g., D7) or a sum of details to retain characteristics
of the signal’s waveform while removing trend and noise (e.g., D5−D7). See Figure
S3 for a comparison to commonly used methods of removing trend.

A further use of the DWT is to partition the variance with respect to scale.
Here we prefer the nearly-equivalent term energy as better describing the quantity
involved. The signal’s variance σ2

x equals the mean of squared values of the signal
minus the square of the mean. According to Parseval’s theorem, the sum of squared
values equals the mean of the squared Fourier coefficients, which can be used to
partition the variance with respect to frequency. The wavelet and scaling filters
satisfy the same orthogonality conditions and so we have a similar result for the
DWT (Percival and Walden, 2000). For clarity, we use the following norm notation:
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for a signal x = {xk}, k = 0, . . . , N − 1, let ||x||2 =
∑N−1

k=0 x
2
k, with a similar

interpretation of ||Wj||2 as the sum of squared level-j wavelet coefficients Wj,k over

k = 0, . . . , N − 1. With this notation, we can write ||x||2 = ||VJ ||2 +
∑J

j=1 ||Wj||2,
and then use this to partition the variance of the signal, where x̄ is the signal’s mean:

σ2
x =

1

N

N−1∑
k=0

x2
k − x̄2 =

1

N
‖x‖2 − x̄2

=
1

N
||VJ ||2 +

1

N

J∑
j=1

||Wj||2 − x̄2

=
( 1

N
||VJ ||2 − x̄2

)
+

1

N

J∑
j=1

||Wj||2

The term
(

1
N
||VJ ||2− x̄2

)
corresponds to variance accounted for by the trend, while

the sum over ||Wj||2 partitions the remaining variance among the wavelet details.
We discard the trend and focus on this second term. Accordingly, we define the
energy to be the variance of the detrended time series, so that the energy equals
1
N

∑J
j=1 ||Wj||2 and is thereby partitioned with respect to scale. Using the detrended

time series here is consistent with other methods for oscillatory signals; for example,
autocorrelation and DFT are usually applied to time series after removing the trend.
The premise is that we are interested in the oscillatory portion of the signal, while
the trend represents a different process. Figure S4 illustrates this method.

S.3 Analytic wavelet transform

To further illustrate how to interpret the AWT, Figure S5 displays a 2-dimension
heat map and a 3-dimensional surface representing the AWTs of a sinusoid with
varying frequency and also a sinusoid of varying amplitude. While the 2-dimensional
heat map is more convenient on the printed page, the 3-dimensional view emphasizes
the definition of the ridge as the curve connecting the maximum values.

Unlike real-valued transforms, the complex-valued AWT yields estimates for both
the amplitude and phase. The AWT of the wheel-running record in Case Study #2
is shown in Figure 6 of the main text, along with period and amplitude estimates
over time. We can also extract the phase over time, which is shown in Figure S6.
Graphs of the AWT applied to wheel-running records of other female mice are shown
in Figure S7, demonstrating the generality of the 4-5 day pattern measured by the
AWT.
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Figure S1: Top left: A sinusoid with 24h period and unit amplitude has white noise
and trend added. Top right: The discrete Fourier transform (DFT) of the signal
shows an amplitude of nearly 1 at the desired frequency of 1 cycle/day, but also
has significant coefficients at low frequencies (from the added trend) and small jitter
throughout the spectrum due to the added white noise. Also note the “leakage”
around the peak circadian frequency. The resolution of the DFT depends on the
number of cycles present in the signal; fewer cycles leads to more widely spread
frequencies. If the signal’s peak frequency doesn’t exactly match one of the DFT’s
frequencies, the DFT must use a combination of nearby frequencies to reconstruct
the signal. By multiplying the DFT with the red curve, we retain the cluster of
frequencies near the peak circadian frequency, but greatly reduce DFT coefficients
corresponding to higher and lower frequencies. Bottom left: The result of multiplying
the signal’s DFT coefficients by the red curve. Applying an inverse DFT to these new
coefficients leads to a clean signal with diminished noise and trend. Bottom right:
The filtered signal is very close to the original sinusoid before noise and trend were
added. However, note the edge effects, including altered amplitude and frequency
distortions, at the left and right ends. This is a general consequence of circular filters
such as the DFT and the wavelet transforms if extra procedures to reduce edge effects
are not taken. The problem is that circular filters wrap back around to the beginning
of the signal when they reach the end of it, causing a discontinuity that distorts the
transform coefficients.
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Figure S2: Multiresolution analysis of PER2::LUC bioluminescence rhythm from
wild-type (left) and Bmal1-/- mutant (right) SCN explants (sampling interval ∆t =
1/6 h, units of photons/min), with data from Ko et al. (2010). The original signal
x, shown at the bottom, is the sum of the wavelet details D1 −D7 plus the wavelet
smooth S7 that contains the trend. The detail Dk corresponds to a frequency band
with period range 2k∆t to 2k+1∆t hours; in this example D7 corresponds to period
range 21-42h. Rapid events like the media changes in the WT SCN time series on
days 6 and 15 appear in details D1 −D3 that correspond to very short scales. High
frequency noise will be separated out into the small scale details, D1 − D3 in this
example.
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Figure S3: Comparison of methods to remove trend and noise, using the SCN explant
PER2::LUC recording from an LD entrained female mouse shown in Figure 4C. The
trend clearly does not follow an exponential or polynomial shape. Subtracting off
a linear fit or 4th order polynomial fit make poor choices for detrending this time
series, while subtracting a running 24h mean does as well as the DWT method of
retaining the details corresponding to circadian periods. Notice that the DWT quite
effectively removes noise as well as trend. Taking a running 2h mean to smooth after
subtracting the running 24h mean does not remove the noise as well as the DWT
method, particularly in the second half of the record. For purposes of, for example,
peak-picking in order to compare cycle lengths, the DWT does an excellent job of
preprocessing the data so that peak times can be easily determined.
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Figure S4: Wavelet coefficients from PER2::LUC bioluminescence rhythm from wild-
type (left) and Bmal1-/- mutant (right) SCN cells (sampling interval ∆t = 1/2 h,
units of photons/min), with data from Ko et al. (2010). All wavelet coefficient
curves for a given cell have mean zero and are plotted with the same scale, so their
magnitudes can be directly compared. Scaling coefficients are not shown. The level-
j wavelet coefficients Wj corresponds to a frequency band with period range 2j∆t
to 2j+1∆t hours; in this example W5 corresponds to period range 16-32h. The
partitioning of energy with respect to scale is one way to assess the strength of
circadian rhythmicity in mutant cells. The percentage of energy contained in the
level-j wavelet coefficients is indicated along the right margin of each graph, and is
defined by ||Wj||2/

∑7
i=1 ||Wi||2. For the wild-type SCN neuron shown on the left,

70% of the energy lies in the circadian component. For the Bmal-/- SCN neuron
shown on the right, only 11% of the energy lies in the circadian component, which
strongly suggests that the cell is arrhythmic. Note that noise will typically have
some energy throughout the spectrum and so will be present at all scales; a signal is
rhythmic only if the energy in its circadian component is significantly above that of
the other scales. In the case of this Bmal-/- cell, the circadian component is almost
surely due to noise, rather than any true circadian rhythm. Also observe the three
large peaks occurring roughly 12h apart on the second day, which show up in W4,
which corresponds to period range 8-16h.
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Figure S5: Two examples of signals (top) and their analytic wavelet transforms with
ridges (middle and bottom). Left column involves a signal with frequency that varies
over time, while the right column involves a signal with amplitude varying over time.
Middle images show the absolute values of the AWT coefficients of the signals as a
two-dimensional heat map, while the bottom images display the same values but as
a 3-dimensional surface to emphasize the meaning of the wavelet ridge, which tracks
the maximum coefficients over time. The color scale indicates the amplitude, while
the wavelet ridge curves in black mark indicates the instantaneous frequency, written
in terms of period=2π/frequency for clarity. Periodic boundary conditions were used
to eliminate edge effects.
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Figure S6: Wavelet ridge curve for period over time along with the corresponding
phase angle of wheel-running activity with the LD cycle, showing the relationship
between the 5-day variation in period and phase of wheel-running for the example
shown in Figure 6 of the main text. A phase angle of 2h means that the mouse’s
internal clock is 2h ahead of ZT time, e.g., CT2 corresponds to ZT0. During this
portion of the recording, the mouse is re-entraining to the LD cycle following an 8h
advance, which may account for the first 4 days showing little of the 4-day pattern.

9



6 12 18 24 6

0

10

20

ZT (hours) 

D
ay

s 

Time in days

P
er

io
d 

in
 h

ou
rs

 

 

4 8 12 16 20 24 28
20

22

24

26

28

100

200

300

400

500

6 12 18 24 6

0

10

20

ZT (hours) 

D
ay

s 

Time in days

P
er

io
d 

in
 h

ou
rs

 

 

4 8 12 16 20 24 28
20

22

24

26

28

100

200

300

400

500

6 12 18 24 6

0

10

20

ZT (hours) 

D
ay

s 

Time in days

P
er

io
d 

in
 h

ou
rs

 

 

4 8 12 16 20 24 28
20

22

24

26

28

100

200

300

400

500

Figure S7: Three further examples of the AWT applied to wheel-running records of
female mice. Actograms on the left show wheel-running (15 minute bins, ranging
from 0 to 1200 revolutions per bin) under the LD cycle indicated by the white and
black bars along the top. The AWT heat maps with ridges on the right quantify
the 4-5 day variation in period and amplitude that is primarily due to changes in
activity during the second half of the night. This analysis facilitates quantification
of this pattern. For instance, activity amplitude is greatest (red color) when period
is decreasing, as shown by the black ridge curve. (As in Figure S5, the color scale
indicates the amplitude, while the wavelet ridge curves in black mark indicates the
instantaneous frequency, written in terms of period=2π/frequency for clarity. Two
days were dropped on each side to eliminate edge effects.)
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