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c The method provides more accurate period estimates than other common methods.
c It also quantifies the reliability of period estimates of noisy oscillators.
c Cellular oscillators exhibit significant stochastic variability in period.
c We assess the length of time series required for reliable period estimation.
c Hierarchical modeling distinguishes within-cell from between-cell variability in period.
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a b s t r a c t

Precise determination of a noisy biological oscillator’s period from limited experimental data can be
challenging. The common practice is to calculate a single number (a point estimate) for the period of a
particular time course. Uncertainty is inherent in any statistical estimator applied to noisy data, so our
confidence in such point estimates depends on the quality and quantity of the data. Ideally, a period
estimation method should both produce an accurate point estimate of the period and measure the
uncertainty in that point estimate. A variety of period estimation methods are known, but few assess
the uncertainty of the estimates, and a measure of uncertainty is rarely reported in the experimental
literature. We compare the accuracy of point estimates using six common methods, only one of which
can also produce uncertainty measures. We then illustrate the advantages of a new Bayesian method
for estimating period, which outperforms the other six methods in accuracy of point estimates for
simulated data and also provides a measure of uncertainty. We apply this method to analyze circadian
oscillations of gene expression in individual mouse fibroblast cells and compute the number of cells and
sampling duration required to reduce the uncertainty in period estimates to a desired level. This
analysis indicates that, due to the stochastic variability of noisy intracellular oscillators, achieving a
narrow margin of error can require an impractically large number of cells. In addition, we use a
hierarchical model to determine the distribution of intrinsic cell periods, thereby separating the
variability due to stochastic gene expression within each cell from the variability in period across the
population of cells.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Estimation of cycle length or period is a standard yet surprisingly
difficult task in the study of biological oscillators. One challenge is
that the sample time series may not be sufficiently long in duration
to determine the overall behavior of the oscillator. Because biologi-
cal oscillators are stochastic in nature, the period will vary from
cycle to cycle. Given a relatively short time series, there may not be

enough information to pinpoint the period of the oscillator, and so it
is important to have a measure of confidence in the point estimate.
In the frequentist approach, the confidence interval is a standard
measure of such uncertainty in the point esimate. For example,
suppose multiple independent time series were sampled from a
single oscillator and the 95% confidence interval of the period was
calculated for each sample. Then, the period value that best
describes the oscillator will be contained within 95% of these
intervals. A tighter confidence interval indicates a more reliable
point estimate. Factors such as biological noise, measurement error,
relatively short time series, and less frequent sampling can result in
less reliable point estimates and wider confidence intervals.
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Bayesian statistics provides a natural framework in which to
examine uncertainty in period estimation for biological oscillators.
We use a Bayesian parameter estimation method that is rather
different from period estimation methods in current use. Using
simulated data, we first show that the Bayesian approach is as
accurate, if not more accurate, than these more standard methods.
To demonstrate the approach on experimental data, we focus on the
endogenous mammalian circadian clock that generates an "24 h
oscillation via transcriptional–translational feedback loops of gene
expression (Bell-Pedersen et al., 2005). Oscillations of the circadian
clock can be measured in activity and temperature rhythm outputs
at the level of whole organisms or in gene expression within cells
and tissues (Dunlap et al., 2004). In particular, expression of clock
genes like Period2 can be monitored via bioluminescent reporters,
e.g., through PER2::LUC imaging of cells from mPer2Luciferase-SV40

knockin mice (Welsh et al., 2004).
A variety of methods have been developed for determining

parameters such as period, phase, and amplitude from circadian
activity and gene expression data, including autocorrelation,
periodograms, and wavelet transforms (Dowse, 2009; Levine
et al., 2002; Price et al., 2008). Here we introduce a period
estimation method for circadian oscillations that avoids some of
the disadvantages of other methods, as discussed in Section 1.2.
Specifically, we apply a Bayesian model to 6-week-long PER2::-
LUC recordings of 78 dispersed fibroblasts from mice (Leise et al.,
2012). Because prior work showed that all of these fibroblast time
series exhibit significant circadian rhythms with no other strong
periodicities (Leise et al., 2012), we apply a Bayesian estimation
method focused on determining the circadian period for each
fibroblast. The results demonstrate how uncertainty is related to
experimental factors such as the length of the time series,
sampling rate, and the number of cells recorded. This information
can be used when designing experiments, for example, to ensure
that sufficiently long time courses are recorded to achieve reliable
and experimentally reproducible results. The analysis of the
PER2::LUC recordings demonstrates how such experimental
design elements can be determined. Although we focus on a
specific type of oscillator to illustrate the method, this is an
approach that can be applied more generally to time series arising
from any noisy biological oscillator, including estimation of
multiple frequencies (Andrieu and Doucet, 1999) or time-
varying frequencies (Nielsen et al., 2011).

Uncertainty should be considered not only when calculating the
period of an individual oscillator, but also when measuring the
mean period of a population of oscillators. Uncertainty in the period
estimate of individual oscillators necessarily translates to uncer-
tainty in the period estimate for a population. We apply a hier-
archical Bayesian model that jointly calculates uncertainty in period
estimates at the individual and population level. We introduce the
Bayesian method for estimating period, briefly describe other more
commonly used methods, and then compare their performance.

1.1. Overview of the Bayesian parameter estimation method

Bayesian statistics is a powerful framework within which to
investigate the uncertainty of parameter estimates. Bayesian statis-
tics treats probability as a degree of belief rather than as a
proportion of outcomes in repeated experiments, as assumed in
classical frequentist statistics (Hoff, 2009). To illustrate essential
Bayesian concepts, we consider the ‘‘experiment’’ of flipping a coin
to determine y, the probability of heads on a single flip. The goal is
to produce a distribution for y that assigns different degrees of
belief, or likelihoods, to values between 0 and 1. If the coin is fair, for
example, the distribution should be centered on 0.5.

This Bayesian degree of belief is built from several steps. First,
a data model is specified. The model formulates a relationship

between the parameters and potential experimental outcomes.
For example, a coin flip experiment with N trials is usually
modeled as a binomial distribution with parameter y, the prob-
ability of a heads on each flip. The data model is used to derive a
likelihood function that gives the probability of experimental
outcomes given particular parameter values.

Second, prior probabilities are defined that represent belief in
the possible parameter values before an experiment is conducted.
The use of prior distributions enables a priori knowledge to enter
into the statistical process and can be based on knowledge from
past research, physical constraints, mathematical convenience,
etc. In the coin example, if there is no reason to believe that one
value of y is more likely than another, a natural choice for the
prior probability is a uniform distribution from 0 to 1. That is, all
values of y are equally likely a priori.

Third, given new experimental data, Bayes’ theorem updates the
likelihood of the possible parameter values using the prior distribu-
tion and the likelihood function. The resulting distribution, called the
posterior probability, provides the likelihood of each possible para-
meter value, given both our prior knowledge and experimental data.
In the coin experiment, suppose 4 out of 10 flips were heads.
Combining the prior with the outcome of this experiment produces
the posterior distribution shown in Fig. 1. Note how the belief in the
possible values of y has shifted away from the uniform prior and
towards a distribution with a mean near 0.40 as suggested by the
experimental data. That is, there is a high likelihood that y is near
0.40, but little chance that yZ0.85. The posterior can be updated
when more data become available. If the coin is flipped 20 more
times with 15 heads, the posterior is now centered near 0.63 (i.e.,
4þ15¼19 heads out of 10þ20¼30 flips). As more data are collected,
the influence of the prior decreases and the posterior becomes
narrower, indicating greater confidence in certain parameter values.

Once the posterior probability distribution is calculated, it is
possible to determine any statistic of interest for the parameters,
e.g., the mean, the standard deviation, the mode, and so on. For
example, the mean estimate of y after 30 flips, 0.625, shown in
Fig. 1, is the mean of the posterior probability distribution. Note
that, because of the influence of the prior, this value is still
slightly lower than the data mean of 0.63 (see Kruschke (2011) for
a friendly introduction to Bayesian statistics and a more detailed
description of this coin problem.)

Bayesian statistics allows us to quantify how confident we are
in our estimation of parameter values. The credible interval (CI) is
a measurement of the uncertainty associated with a parameter
estimate. The CI is the Bayesian equivalent of a confidence
interval. Unlike a standard confidence interval, however, the
interpretation of a CI is straightforward: the probability that a
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Fig. 1. Coin-flip illustration of Bayesian statistical concepts. In this example, the
prior probability distribution P(y) is the uniform distribution on [0,1], and P(y910
flips, 4 heads) is the posterior distribution resulting from the experiment that
yielded 4 heads out of 10 coin flips. The posterior P(y930 flips, 19 heads) was
computed using the experimental outcomes of a total of 30 flips, and is shown as a
solid curve with the mean as a dashed vertical line and the 95% CI indicated with
dotted vertical lines.
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parameter lies within a 95% CI is 0.95. The margin of error is
defined as half the width of a CI. There are a few different ways to
define a CI. Here we follow the most common practice and simply
take the middle 95% of the posterior probability distribution. The
95% CI for the 30 trial coin-flipping example is provided in Fig. 1.

It is commonly difficult or impossible to produce an analytical
solution to determine the posterior probability. It is, however,
often possible to determine the posterior to within a scaling
constant, that is, we only have access to an un-normalized form of
the posterior. From this un-normalized function it is possible to
determine the relative likelihood of each parameter value, but,
without the normalizing factor, it is not possible to directly draw
samples or determine statistics from it. Thus, stochastic methods
have been developed to numerically approximate the posterior.
Arguably the most important class of such methods is Markov
chain Monte Carlo (Gamerman, 1997; Hastings, 1970) in general
and the Metropolis Hastings (MH) algorithm (Chib and
Greenberg, 1995) in particular. The key idea behind the MH
algorithm is to draw samples from a carefully chosen, easy-to-
sample distribution, called the proposal distribution, and then to
use the relative likelihood provided by the un-normalized poster-
ior to accept or reject these samples as proposed samples from
the posterior. The proposal distribution must satisfy certain
properties. For example, the proposal distribution must be non-
zero everywhere the posterior is non-zero. See Andrieu et al.
(2003) for an accessible overview of rejection sampling, the MH
algorithm, and MCMC in general. The set of accepted samples can
then be used to approximate the posterior distribution and
thereby estimate statistics on the parameter. Because these
distributions are built up from a set of discrete samples, they
typically look more like histograms than the smooth distributions
of Fig. 1. Software such as OpenBUGS (mathstat.helsinki.fi/open-
bugs/) is readily available for running MCMC methods.

Because practical implementation requires fast computers, the
Bayesian estimation of frequency is a relatively young field.
Jaynes (1987) and Bretthorst (1988) clarified the relationship
between Bayesian inference, spectral analysis, and parameter
estimation, and derived the earliest methods of Bayesian spectral
analysis. In particular, Bretthorst (1988) used a Bayesian frame-
work to show that the peak frequency of the Schuster period-
ogram is the optimal estimator under the assumption of a single
sinusoid plus white noise, as well as deriving a generalized
framework for Bayesian spectral analysis. Dou and Hodgson
(1995) developed an MCMC algorithm for estimating period,
phase, and amplitude of multiple sinusoids. Andrieu and Doucet
(1999) developed an approach based on the MH algorithm that is
more efficient than earlier methods and remains robust when the
signal-to-noise ratio is low, and that is extended to a dynamic
sinusoidal model in Nielsen (2009) and Nielsen et al. (2011).

To apply a Bayesian analysis to the study of the period of
biological oscillators, we follow the procedure described in
Andrieu and Doucet (1999), Nielsen (2009) and Nielsen et al.
(2011), to which we give the acronym BPENS (Bayesian parameter
estimation for noisy sinusoids). Following the steps outlined
above in the coin-flipping example, we must first specify a data
model and then derive its likelihood function. A natural data
model for a biological oscillator is a noisy sinusoid

x¼ A cosðotþjÞþet :

Here A is the amplitude, j is the phase angle,o is the frequency, t
is time, and et represents noise at time t. We assume et at each
time point to be independent and identically distributed Gaussian
noise with mean 0 and variance se2, that is, et¼N(0, se2). We can
express this model in the equivalent form

x¼ B1 cosðotÞþB2 sinðotÞþet :

Because a parameter is removed from inside the cosine function,
this form is mathematically more convenient. A likelihood func-
tion is then derived from this equation. The likelihood function
gives the probability that this data model with particular values
for parameters o, B1, B2, and se could produce the observed time
series {x(ti): i¼1,y,N}. Chapter 4 of Nielsen (2009) provides a
derivation of the likelihood function associated with the noisy
sinusoid model, which is too technical to include here; also see
Andrieu and Doucet (1999).

The second step is to select prior distributions for the para-
meters. We use the mathematically convenient priors given in
Andrieu and Doucet (1999) and Nielsen (2009). For example, the
prior distribution of o is assumed to be a uniform distribution
from 0 to p radians/time unit, meaning that all possible frequency
values are judged equally likely a priori. See Appendix C for details
on the choice of prior distributions, and Bretthorst (1988) for a
general discussion of how to select prior distributions.

The third step is to determine the posterior distribution of the
frequency parameter o, which gives the probability of particular
values for o given the observed time series. Given experimental
data, i.e., a time series, the prior distributions, and the likelihood
function, Bayes’ theorem yields an expression for the posterior
distribution. The posterior is proportional to the product of the
prior distributions and the likelihood function. Because the
posterior contains an unknown scaling constant, the MH algo-
rithm is used to approximate the normalized posterior (with the
scaling constant divided out). Statistics of interest can then be
derived from this approximated posterior. Specifically, the mean
of this distribution provides a point estimate of frequency and the
CI provides a measure of uncertainty. The parameters B1, B2, and
se are considered nuisance parameters, and are removed by
integrating the Bayes’ Theorem expression with respect to each
of these parameters. A potential downside of the BPENS method is
that, compared to the other methods described below, it is
relatively time consuming.

1.2. Summary of other period estimation methods

We next briefly survey some methods in common use for
estimating period of biological oscillations, particularly for circa-
dian rhythms.

Direct sine-fitting calculates the amplitude, period, and phase
angle for the sine curve that best fits the data (sometimes including
an exponential decay term for the amplitude). This method is most
appropriate for sinusoidal waveforms, such as circadian clock gene
expression rhythms measured using PER2::LUC reporter biolumi-
nescence. Similar to BPENS, sine-fitting methods offer a measure of
uncertainty in the form of a confidence interval or margin of error
(half the width of the confidence interval) for the period estimate,
but these values are, unfortunately, rarely reported. In place of
confidence intervals, researchers often rely on goodness-of-fit.
However, goodness-of-fit indicates how sinusoidal the time series
is, rather than giving a direct indication of how reliable the period
estimate is. The period estimate from a model fit with a goodness-
of-fit value of R2¼0.95 could be less reliable than one for a different
time series with R2¼0.9 if, for example, the lower R2 value is due to
the latter time series having a significant trend or non-sinusoidal
waveform despite exhibiting strong periodicity.

All of the remaining methods provide point estimates for the
period but no measure of uncertainty.

The discrete Fourier transform (DFT) decomposes a signal into
a sum of sinusoids, with the Fourier coefficients giving the
amplitude associated with each frequency. Numerical methods,
including the fast Fourier transform (FFT) and windowed variants,
offer period point estimates for a variety of data types. Because
the frequencies for the DFT are uniformly spaced by 1/T cycles/

A.L. Cohen et al. / Journal of Theoretical Biology 314 (2012) 182–191184



hour, where T is the length of the time series in hours, the point
estimate will have poor resolution unless the time course is
reasonably long. For example, the DFT of a time series 4 days in
length will report frequencies in the circadian range correspond-
ing to 19.2 h, 24.0 h, and 32.0 h periods. For a time series 32 days
in length, the resolution improves but is still limited, having
values 22.59 h, 23.27 h, 24.0 h, 24.77 h, and 25.6 h in the 22–26 h
range. Although the point estimate resolution is poor, the DFT can
be used very effectively to detect whether a significant rhythm is
present and to measure the strength of rhythmicity (Ko et al.,
2010; Leise et al., 2012).

Maximum spectral entropy analysis (MESA) fits an autore-
gressive function to the data and uses the coefficients to calculate
the power spectrum with substantially better resolution than the
Fourier transform can offer. MESA can work quite well on even
short noisy time series, but does not provide a test for significance
of the rhythm at a peak frequency (Dowse, 2009).

The coefficients of the autocorrelation sequence (ACS) give the
correlation between a time series and shifted versions of itself. A
peak in the ACS occurs when the time series is shifted by its
period, thereby yielding a simple technique for detecting signifi-
cant periodicity (Dowse, 2009). If low frequency trend is first
removed, this method can provide good point estimates of
circadian period, even for non-sinusoidal locomotor activity data.

The chi-square periodogram, a method often used to assess
circadian rhythmicity of non-sinusoidal locomotor activity
records, essentially rasterizes or folds data, averaging together
data points separated by a given time interval to yield an educed
waveform for each period value, and then choosing the period
resulting in the maximum variance of waveform values. Unfortu-
nately this method suffers from contamination by harmonics and
subharmonics and can be misleading in some cases, for example,
mistakenly categorizing noisy rhythmic data as arrhythmic
(Dowse, 2009).

Another approach is to identify discrete phase markers such as
peaks in bioluminescence data or onsets in activity records. The
average time between such phase markers can be used as a point
estimate of the period. For PER2::LUC bioluminescence, the mean
peak-to-peak times can produce good estimates if the time series
is first smoothed, which is often done using a running average.

Period point estimates produced by most of these methods can
be improved by first filtering the data. Many methods are
available to remove a linear trend or smooth the data to reduce

high frequency noise. A particularly effective method is to apply
discrete wavelet transforms to remove high and low frequencies
to extract the circadian component of a time series, thereby
smoothing the signal and removing nonlinear trends without
distorting the circadian frequency content (which is a danger of
removing high order polynomial trends).

Because calculation of peak-to-peak times to estimate circa-
dian period can be improved by first applying a stationary
discrete wavelet transform (Leise and Harrington, 2011), we
report this method in addition to the peak-to-peak estimate
obtained from smoothing with a running average.

2. Results

2.1. Comparison of the accuracy of point estimates

Before we examine the question of uncertainty in an individual
period estimate, we compare the accuracy of point estimates
generated by our BPENS method and the six commonly used
methods described above. Each method is applied to 100 simu-
lated noisy oscillatory time series of different lengths with a
known period of 24.9 h that mimic the experimental data (see
Appendix A). See Fig. 2 for an example. For each method, the
absolute difference between the true period and the estimated
period averaged over the 100 simulations is given in Table 1. Note
that this procedure tests how close the estimated period is to the
true period, which is a distinct issue from the uncertainty of an
individual period estimate for a time series of unknown period (as
occurs in the experimental context as discussed below). For all
methods, accuracy tended to increase with the number of cycles
in the time series. Of the seven methods tested, the BPENS
method yielded the most accurate period estimates and consis-
tently generated fairly accurate values even for the short 4-cycle
time series. We also tested the sensitivity of the different
methods to noise by comparing the errors for different levels of
noise in the simulated time series, shown in Table S1. For most
methods, error tends to increase with noise level.

We can further validate the accuracy of the BPENS method by
comparing its results for real experimental data with those of the
wavelet-filtered peak-to-peak method. The peak-to-peak method
was selected for comparison because it is distinct from the sine-
fitting methods and performed well in the simulation test. For the
fibroblast time series (Leise et al., 2012), the peak-to-peak and
BPENS methods produced strongly correlated period estimates
(r¼0.96, po0.001), indicating that BPENS estimates are consis-
tent with those of an established method. Although the noisy
sinusoid model underlying BPENS is appropriate for our fibroblast
data, methods not based on sinusoidal models may be more
accurate for time series with different waveforms.

2.2. Comparison of uncertainty measures

Recall that both the sine-fitting and the BPENS method provide
measures of uncertainty for individual time series. We compare
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Fig. 2. Example of simulated noisy oscillatory time series used to test the 7 period
estimation methods.

Table 1
Comparison of methods to determine period in simulated noisy oscillatory time series of various lengths and a sampling rate of 2 samples/h, where the true period is
24.9 h. Values in the table are the absolute error averaged over the 100 point estimates for each of the 7 methods.

Length of time series DFT MESA ACS Peak-to-peak
(running average)

Sine-fitting Peak-to-peak
(wavelet)

BPENS

4 cycles 36 min 15 min 23 min 31 min 13 min 7.6 min 5.4 min
8 cycles 28 min 6.2 min 8.4 min 7.1 min 1.7 min 3.3 min 1.7 min
16 cycles 28 min 1.3 min 8.1 min 2.3 min 1.6 min 0.93 min 0.61 min
32 cycles 16 min 0.65 min 6.0 min 2.1 min 0.42 min 0.53 min 0.24 min
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the margin of error for the two methods applied to the 24.9 h
simulated data, with results in Table 2. Because they have
different theoretical interpretations, direct comparison of the
margins of error produced by these two methods would not be
appropriate. Therefore, we instead take a frequentist approach
and compare the number of times that the true period lies within
the estimated margin of error. The two methods yield similar
results, with the exception that BPENS provides a more conser-
vative assessment of the uncertainty when given only 4 cycles of
data (as shown in Table 2) but in all cases yields a more accurate
point estimate of the period (as shown in Table 1). Noise level in
the simulated signals had little effect on the BPENS estimated
margin of error, as shown in Table S2.

2.3. Uncertainty in fibroblast time series period estimates and its
relation to the number of observed cycles

The previous analysis demonstrates that the accuracy of the
BPENS method is superior for determining period point estimates
(for time series similar in nature to the test data). We now
describe how the BPENS method can be used to determine the
uncertainty in these period estimates in experimental data. We
expect uncertainty to depend on properties of the experimental
time series, such as the length of the series and signal-to-noise
ratio. Under the assumption of a sinusoid plus white noise with
known variance, Bretthorst (1988) derived an expression for the
frequency estimate that shows that uncertainty decreases as the
signal-to-noise ratio increases and as N, the number of data
points, increases. By increasing the number of cycles or the
sampling rate, we increase N and so reduce the uncertainty in
the period estimate. Similarly, we can more reliably estimate the
period of a time series with a larger signal-to-noise ratio. See
Appendix F for details. For the experimental data we consider, the
assumptions necessary for this derivation do not hold, so we
numerically calculate the uncertainty.

We applied the BPENS method to a set of PER2::LUC recordings
of 78 dispersed fibroblasts from mice reported previously (Leise
et al., 2012). The objective is to measure uncertainty in the period
estimates and use these results to determine the length of
recording necessary for accurate and reproducible period estima-
tion for this type of noisy biological oscillator. Fig. 3 shows the
posterior distributions for the period computed by the BPENS
method for a representative fibroblast using 4, 8, 16, and 32
cycles. Note that the reliability of the period estimate increases
with the number of cycles. In this example, the margin of error is
0.57 h, 0.17 h, 0.054 h, and 0.018 h for 4, 8, 16, and 32 cycles,
respectively. Fig. 4 provides the distribution of margins of error
for the four different lengths of times series. In general, the
margin of error decreases toward zero as the time series
lengthens.

Note that, for the fibroblast shown in Fig. 3, using only the first
4 cycles yields a somewhat different mean period estimate than
when using 32 cycles. This outcome is a consequence of the

stochastic variability in period across the 32 cycles. That is, the
length of each cycle varies over time. Because a short time series
captures only a small random sample of the cycle lengths, it will
be less representative of the full distribution of cycle lengths that
can occur. Fig. 5 illustrates how period estimates can vary over
time for 4 fibroblast examples.

Table 2
Comparison of margin of error computed using the two different methods, sine-
fitting (using MATLAB’s Curve Fitting Toolbox) and BPENS, for the 100 simulated
noisy oscillatory time series. The margin of error equals half the width of the 95%
CI. The percent of samples in which the estimated period value was within the 95%
CI is given in parentheses.

Length of time series Sine-fitting BPENS

4 cycles 17 min (71%) 48 min (100%)
8 cycles 7.1 min (99%) 13 min (100%)
16 cycles 3.2 min (98%) 3.5 min (100%)
32 cycles 1.3 min (99%) 1.0 min (100%)
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Fig. 3. Application of the BPENS period estimation method to Fibroblast #57,
whose time series is shown at the top, using 4, 8, 16, or 32 cycles. Each histogram
displays the computed posterior distribution for the period, with 95% CIs indicated
by dotted lines and the mean value by a dashed line. The width of the CIs reflects
the uncertainty of the period estimate. Note that as the number of cycles
increases, the range of the horizontal axis greatly decreases.
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Fig. 4. Box plot of the margins of error for the fibroblast time series versus the
number of cycles in the time series. Median margins of error are 0.57 h, 0.20 h,
0.071 h, and 0.031 h for 4, 8, 16, and 32 cycles, respectively. Plus signs indicate
outliers.
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Because experiments also vary in how often measurements are
recorded, we examined different sampling rates. Fig. 6 illustrates
how sampling rate affects uncertainty in the period estimate. For
all sampling rates, the margin of error decreases with the number
of cycles in the time series. In addition, the margin of error also
decreases as sampling rate increases. The number of cycles had a
much greater effect than sampling rate, consistent with the
theoretical analysis in Appendix F; sampling rate only had a
strong effect when the number of cycles was low. Regardless of
the sampling rate, 16 cycles appears sufficient to yield quite
reliable estimates under the BPENS method.

2.4. Reliable determination of the population’s mean period

We assume that each oscillator has an intrinsic period that
may differ from those of others in the population and so we must
consider not only stochastic variability over time within each cell,
but also variability across the population of cells. How many cells
and how many cycles do we need to estimate the mean period of
the population to a given level of accuracy? That is, how will the
uncertainty in the mean period estimate for a population of cells
vary with the number of cells and the number of cycles?

BPENS was used to calculate a point estimate of the period for
each of the 78 fibroblasts for 4, 8, 16, and 32 cycles. Histograms of
these point estimates are shown in Fig. 7. The mean of these point

estimates was taken as an estimate of the population’s mean
period. A 95% confidence interval can then be constructed for the
population’s mean period. The estimate of the population’s mean
period and associated confidence interval are also shown in Fig. 7.
Three trends emerge from this analysis. First, the estimate of the
mean period of the population remains consistent when using
8 or more cycles per cell. Second, as more cycles are used, fewer
outliers appear. Third, uncertainty in the mean period decreases
as the number of cycles increases. Varying sampling rate had little
effect on either this or the following analysis and so is not
reported.

The analysis above varied the number of cycles for a fixed
number of cells. Given a fixed number of cycles, we can extend
this procedure to estimate how many cells are needed to reach a
desired CI width. We sampled with replacement from the 78 cell
periods estimated by BPENS for a fixed number of cycles. The
number of cells sampled was varied. This bootstrapping proce-
dure was repeated 5000 times. Fig. 8 shows the margin of error
resulting from the 5000 bootstrap samples, for each sample size.
For example, with only 4 cycles, we need approximately 194 cells
to reduce the margin of error to 30 min, but with 32 cycles the
required number of cells drops to 14. This analysis provides a
guideline for determining the number of cells and cycles that
should be recorded in similar experiments to yield reproducible
period measurements. Table 3 shows the number of cells required
to achieve a margin of error of 0.5 h, 0.25 h, or 0.125 h for 4, 8, 16,
or 32 cycles.

2.5. Decomposition of within-cell and between-cells variability to
assess heterogeneity in the population

Once a good estimate of the population’s mean period is
obtained, the next natural question concerns the variability in
the cell periods. Consider the dataset of BPENS period estimates
consisting of 8 consecutive, non-overlapping 4-day segments
from each of the 78 cells. We can ask whether the intrinsic
periods of all 78 oscillators are similar, with noise causing the
apparent differences, or whether the population is heterogeneous
with some distribution of periods. To address this question, we
turned to a Bayesian hierarchical model to estimate simulta-
neously the variability across cells and the variability of period
over time within each individual cell.

The model assumes that the intrinsic periods of the cells are
normally distributed with population mean m and standard
deviation r. We further assume that each cell’s time series
exhibits some level of variability in cycle length. That is, each
cell’s period is normally distributed about its intrinsic period with
some standard deviation s. A numerical parameter estimation
procedure involving the MH algorithm similar to that described
above was used to determine values for the three parameters m, r,
and s (see Appendix E). Fig. 9 provides the posterior probabilities
for each of these parameters. In agreement with the results above,
the best estimate of the population’s mean period, m, is 24.94 h,
with CI [24.72,25.17]. The standard deviation of periods across the
population, r, is 0.89 h, with CI [0.72,1.09]. The within-cell
variability, s, is 1.43 h, with CI [1.34,1.51].

This result provides an estimate of the heterogeneity in the
population of cells. As in a standard ANOVA, the magnitude of the
between-cell variability, r, is best viewed in relation to the
within-cell variability, s. Because the posterior distributions of
r and s are not independent, we need a measure of how these
parameters co-vary. Fig. 10 provides a set of 8000 samples drawn
from the joint distribution of r and s, numerically generated by
the MH algorithm. For this set of samples, r is always less than s,
implying that the between-cell variability is less than the within-
cell variability.
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We have assumed that within-cell variability involves fluctua-
tions about some intrinsic period for each individual oscillator,
but a potential issue is that the period of the cell population could
change gradually over the duration of an experiment due to
declining health of the cells or changes in the medium. This
appears to be only a minor concern for our fibroblasts, as the
mean period across the population shows only a very gradual
increase of 0.02 h/day, or 0.1% per day, as reported in Leise et al.
(2012).

3. Discussion and conclusions

As a consequence of both intrinsic noise from the molecular
dynamics of the intracellular clock and extrinsic noise from other
processes inside and outside the cell, cellular oscillators exhibit
fluctuations in frequency (Elowitz et al., 2002; Gonze et al., 2002).
In particular, short recordings with few cycles may yield mis-
leading results: overestimation of population heterogeneity, large
potential error in the estimated period of each cell, and difficulty
in assessing which cells are significantly rhythmic (Leise et al.,
2012). On the other hand, practical constraints for experiments
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Table 3
Number of cells required to achieve a margin of error of 0.5 h, 0.25 h,
or 0.125 h, given experimental time series of different lengths.

Length of time
series

0.5 h 0.25 h 0.125 h

4 cycles 194 770 3073
8 cycles 31 124 494
16 cycles 18 71 283
32 cycles 14 58 231
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limit how many cycles can be recorded. For circadian oscillations
in fibroblasts, our analysis suggests that 16 cycles is sufficient to
generate reliable point estimates for individual cell periods using
the BPENS method. The stochastic cycle-to-cycle variability illu-
strated in Fig. 4 implies that short time series with only 4 or even
8 cycles may yield erroneous estimates of the cell’s intrinsic
period.

In addition to cycle-to-cycle variability in individual biological
oscillators, a population of genetically similar oscillators can
exhibit a range of periods due to a combination of within-cell
and between-cell variability. It is important to distinguish the
effects of variability due to stochastic gene expression from
heterogeneity in the population due, for example, to differences
in cell size or epigenetic changes. Our hierarchical modeling
reveals that, while there is some heterogeneity of intrinsic period
in the population, the fibroblasts display much greater within-cell
variability than between-cell variability in period. This finding
agrees with the ANOVA results in Leise et al. (2012), which used
period estimates generated by the wavelet-based peak-to-peak
method.

For the fibroblast time series considered here, which exhibited
stable circadian oscillations, a simple single-frequency model was
sufficient. However, in some situations, such as a forced desyn-
chrony protocol (de la Iglesia et al., 2004), two or more periods
may be present in the time series, in which case the full multiple-
sinusoid reversible jump MCMC algorithm developed by Andrieu
and Doucet (1999) would be appropriate. This algorithm is
designed to detect how many significant rhythms are present
and then estimate their frequencies, and it outperforms classical
model selection techniques like the Akaike Information Criterion

in assessing the number of significant components. In the case of
an oscillator for which the period is expected to change signifi-
cantly over time, a dynamic sinusoidal model as treated by
Nielsen et al. (2011) or probabilistic inference of instantaneous
frequency as in Turner and Sahani (2011) may be more
appropriate.

We conclude that BPENS is a general, powerful method for
determining period of oscillatory time series, including short
noisy time series, which generates both accurate point estimates
and a measure of uncertainty. Commonly used methods, includ-
ing the FFT, MESA, autocorrelation, and mean peak-to-peak time,
provide less accurate period estimates than BPENS and no
information about uncertainty of the estimate. Thus, BPENS
provides not only the best available estimate of oscillatory period,
but also an opportunity to evaluate the reliability of point
estimates based on noisy experimental data. By taking uncer-
tainty into account, one can calculate the number of cycles
required to attain a desired precision of period estimation and
thereby be confident that experimental findings are reliable and
reproducible.
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Appendix A. Simulated data generation

The simulated time series were generated by sampling a
modified waveform (at 0.5 h intervals) consisting of the constant
1/2 plus a cosine function with period 24.9 h and unit amplitude,
with portions falling below zero set equal to zero, and then
adding both Gaussian and Brownian noise, each with standard
deviation 0.2 (to mimic experimental time series; see Fig. 2 for an
example). Because they have more low frequency noise and an
altered waveform, these simulated time series have properties
differing from a simple sinusoid with additive noise.

Appendix B. Fibroblast data

The complete set of experimental data can be found in the
Supporting Information of Leise et al. (2012). We used 34 days
from each recording (starting at the 4th peak), in order to obtain
32 cycles on average for each cell (the typical cycle length is
approximately 25 h). Each time series was detrended using a
stationary discrete wavelet transform as described in Leise and
Harrington (2011). Because they were too short for this analysis,
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we discarded cells #42 and #61 from the original set of 80
fibroblast time series.

Appendix C. BPENS parameters

Determining the posterior distribution for the frequency
parameter o follows algorithm 4.2 of Nielsen (2009) with the
following parameter values: T¼10,000, l¼0.2, g¼6, a¼5, b¼60,
and s2¼(0.5/N)2, where N is the number of data samples. The
initialization value for the MH algorithm was 25 h. The algorithm
was robust to different starting values and parameter values for
the prior distribution. Burn-in time was 20% of total accepted
samples. T is the number of total samples. The form of the prior
follows Eq. (4.26) in Nielsen (2009), in which the assumed
factorization is the least subjective prior distribution in the
absence of prior knowledge, as shown in Andrieu and Doucet
(1999). The distribution of o is assumed to be a uniform
distribution from 0 to p radians/time unit, while the distribution
of se2 is the inverse-Gamma function Inv-G(se2; a,b), which is the
conjugate prior for a Gaussian distribution with known mean and
unknown variance. The prior for the amplitude parameter B is the
normal distribution with mean zero and variance depending on
se2, o, and the expected signal-to-noise ratio g. The proposal
distribution is a mixture of the normalized Fourier periodogram
and a Gaussian with variance s2. The mixing parameter is l.

Appendix D. Description of other period estimation methods

For the sine-fitting method, simulated time series with linear
trend removed were fit to a single sine function using the
MATLAB Curve Fitting Toolbox (MathWorks, Inc., Natick, MA,
2011), which uses nonlinear least squares with a trust-region
algorithm. The simulated time series also had linear trend
removed before applying MESA and Fourier periodogram meth-
ods, while before applying autocorrelation the simulated time
series were wavelet-detrended as described in Leise and
Harrington (2011). The first peak-to-peak method used a 12 h
running average to smooth before selecting peak times, and the
second peak-to-peak method applied the wavelet-based proce-
dure described in Leise and Harrington (2011).

Appendix E. Hierarchical model

The hierarchical modeling follows the procedure in Section
8.3 of Hoff (2009). We assumed a fixed variance s2 for each group.
Priors were 1/s2"g(n0/2, n0s0

2/2), 1/r2"g(Z0/2, Z0r0
2/2), m"N(m0,

g02); within-group model: jj¼{yj, s2}, p(y9jj)¼N(yj, s2); between-
group model: c¼{m, r2}, p(yj9c)¼N(m,r2). Parameter values were
n0¼1, s0

2¼2, Z0¼1, r0
2¼3, m0¼25, g02¼0.25. 10,000 samples were

used in the MH algorithm and burn-in time was 20% of total
accepted samples. Because each cell has only 8 observations and
to keep the number of parameters reasonable, we assumed all
cells had the same value of s.

All computations were done using MATLAB R2011b (Math-
Works, Inc., Natick, MA, 2011).

Appendix F. Theoretical uncertainty of Bayesian frequency estimates

Bretthorst (1988) used a Bayesian framework to show that the
peak frequency of the Schuster periodogram is the optimal
estimator under the assumption of a single sinusoid B1 cos(ot)
plus white Gaussian noise with known variance s2. The Schuster

periodogram C(o) is defined by

CðoÞ ¼
1
N

XN

j ¼ 1

xj e
iotj

!!!!!!

!!!!!!

2

:

The value o0 at which C(o) attains its maximum is the best
estimate. Using this approach and under these assumptions,
Bretthorst, following Jaynes (1987), derived a closed-form expres-
sion for the frequency estimate and its standard deviation:

f est ¼ f 07
1:1s

B1T
ffiffiffiffi
N

p ðin cycles=time unitÞ,

where f¼o/(2p Dt), Dt is the sampling time step, T is the total
duration of the time series, and N is the number of sampled time
points. This expression shows that the uncertainty in the fre-
quency estimate is inversely proportional to the signal-to-noise
ratio (B1/s), so increasing the signal-to-noise ratio should reduce
the uncertainty in the frequency estimate. We also see that
doubling the number of cycles recorded (thereby doubling both
T and N) will have a greater effect in reducing the uncertainty
than doubling the sampling rate (which only doubles N and not
T). Because we do not know s for the fibroblast time series, we
cannot directly use this expression, but our experimental results
are consistent with this theoretical analysis.

Appendix A. Supporting information

Supplementary data associated with this article can be found in
the online version at: http://dx.doi.org/10.1016/j.jtbi.2012.08.038.
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