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Abstract. This article o↵ers an accessible but rigorous and essentially self-contained account
of some of the central ideas in compressed sensing, aimed at nonspecialists and undergraduates who
have had linear algebra and some probability. The basic premise is first illustrated by considering
the problem of detecting a few defective items in a large set. We then build up the mathematical
framework of compressed sensing, to show how combining e�cient sampling methods with elementary
ideas from linear algebra and a bit of approximation theory, optimization, and probability, allows
the estimation of unknown quantities with far less sampling of data than traditional methods.
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1. Introduction. We begin with a simple puzzle to highlight a few key ideas.
Suppose we have 7 gold coins, one of which we suspect is counterfeit and so of a
di↵erent mass than the other coins. Given an accurate electronic scale, can we detect
the counterfeit coin by using the scale at most 3 times? If we know how much a gold
coin should weigh (e.g., an American Eagle half-ounce gold coin should weigh 16.966
grams), the following strategy works. Label the coins with numbers 1 through 7. For
the first weighing place coins 1, 3, 5, and 7 on the scale; for the second weighing use
coins 2, 3, 6, and 7; and for the third weighing use coins 4, 5, 6, and 7. We can express
these choices using a 0� 1 matrix � whose kth row indicates which coins to include
in the kth weighing:

� =

2

4
1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

3

5 (1.1)

Observe that the kth column encodes the integer k in binary, with the digit in
the kth row corresponding to 2k�1. It’s not hard to see that from the outcome of
these three weighings we can uniquely identify any single bad coin. For example, if
only the first set’s mass deviates from the nominal value (here, four times the mass
of a good coin), we deduce that coin #1 is the counterfeit. If both the first and
second sets’ mass deviate, we deduce that coin #3 is the counterfeit, and so on. In
general, coding in binary which sets’ mass deviates from the nominal value yields the
counterfeit coin’s number. In the case of N coins, a similar strategy can be used to
detect a single counterfeit coin with around n = log2(N) weighings, a considerable
savings over the N measurements required by sequentially weighing each coin.

This strategy is an example of a combinatorial group test, an e�cient means of
testing a large number of items in batches in order to identify a small set of atypical
items. For example, in high throughput screening large chemical libraries are tested

⇤Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN 47803;
email: kurt.bryan@rose-hulman.edu; phone: (812)877-8485; fax: (812)877-8883.

†Department of Mathematics, Amherst College, Amherst, MA 01002; email:
tleise@amherst.edu; phone: (413)542-5411; fax: (413)542-2550.

1



2 K. BRYAN AND T. LEISE

20 40 60 80 100−0.4

−0.2

0

0.2

0.4

Coin i

D
e
v
ia
t
io
n
x
i

20 40 60 80 100−0.4

−0.2

0

0.2

0.4

Coin i

D
e
v
ia
t
io
n
x
i

20 40 60 80 100−0.4

−0.2

0

0.2

0.4

Coin i

D
e
v
ia
t
io
n
x
i

Fig. 1.1. Left: Actual deviations xi in mass. Center: Result of `

2-regularization. Right: Result
of `

1-regularization.

on a biological target with the goal of identifying a few active compounds (see [27]
for more on this and other applications).

To illustrate, let us consider the counterfeit coin problem on a somewhat larger
scale. Suppose we have N = 100 coins, numbered from 1 to 100, of which a small
number may be counterfeit. Let the ith component x

i

of x 2 RN denote the deviation

of the ith coin from the nominal mass. Specifically, let’s suppose x13 = �0.3, x37 =
0.44, x71 = �0.33, and all other x

i

= 0, so that coins 13, 37, and 71 are counterfeits.
We seek to identify the counterfeits by weighing n subsets of the coins, with n ⌧ N .
As before, we can form a 0� 1 sensing matrix �, now n⇥N , whose kth row encodes
which coins are included in the kth weighing. However, we are no longer assuming
that at most one coin is bad, so it’s not clear that the binary encoding strategy we
used earlier will work. How should we design the sensing matrix?

Structured methods for choosing subsets to test in order to detect multiple devi-
ations have been developed ([3, 20]), but we’ll take a di↵erent tack: we’ll choose the
subsets randomly! In the present example we’ll create a sensing matrix � by selecting
n = 20 random subsets of coins to weigh. Specifically, let � be a 20⇥100 matrix, each
entry chosen randomly and independently as 0 or 1 with equal probability (e.g., flip
each coin to determine whether to include it in the current weighing). The component
b

i

of the vector b = �x is the deviation from nominal of the mass of the ith subset.
Our goal is to recover x from knowledge of � and the measurements b.

A matrix � with fewer rows than columns, like either sensing matrix above,
leads to an underdetermined system �x = b which, if consistent, has infinitely many
solutions. In such a situation one commonly regularizes the problem, by imposing
additional conditions on x so that a unique solution x = x⇤ exists. The di�culty lies
in finding conditions that guarantee x⇤ is the desired solution (and not one of the
infinitely many other solutions to �x = b). In the present case what we have going
for us is the fact that the correct solution is sparse, that is, most of its components are
zero (since we assume most of the coins are not counterfeit or otherwise defective.)

One common choice for regularizing an underdetermined linear system is to choose
the vector x⇤ that satisfies �x = b and minimizes the standard Euclidean `

2 norm
kxk2 = (

P
i

x

2
i

)1/2. This is an easy problem to solve with multivariable calculus,
e.g., with Lagrange multipliers. Unfortunately, this type of regularization is quite
inappropriate here: the solution vector x⇤ that minimizes kxk2 does not correspond
to a few bad coins, since x

⇤
i

6= 0 for most indices i, as shown in the middle panel of
Figure 1.1. Note however that x⇤ satisfies �x⇤ = b exactly.

More generally, the minimum `

2 norm solution to a linear system �x = b is
almost never sparse. This is illustrated in the left panel of Figure 1.2, in which the
dashed line is a low-dimensional analogue of the hyperplane representing the set of all
solutions to �x = b. Imagine increasing the radius of a circle centered at the origin
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Fig. 1.2. Left: 2-dimensional analogues of `

2 and `

0 balls and of �x = b. Right: 2-dimensional
analogues of `

1 and `

0 balls and of �x = b. Here c and d are constants with c a bit less than d.
Note that the set {x : kxk0 = 1} coincides with the coordinate axes.

until it touches the line. This point of contact yields the minimum value of
p

x

2
1 + x

2
2

among all points on the line and is the solution to �x = b with minimum `

2 norm.
It’s easy to see that for a typical line both components of this point are nonzero.

Since we believe the true solution is sparse, it makes sense to look for solutions to
�x = b that have the fewest possible nonzero components. Let us define kxk0 as the
number of nonzero components in x, then regularize by seeking a solution to �x = b
that minimizes kxk0. The quantity kxk0 is sometimes called the “`

0 norm,” though
it is not a norm; see Exercise 3. If maximal sparsity is what we want, this is clearly
the way to go. The panels in Figure 1.2 illustrate the idea in R2: The set of vectors
that have one nonzero component, {x : kxk0 = 1}, coincides with the coordinate
axes. The solution set to �x = b thus contacts kxk0 = 1 in precisely two locations,
each on a coordinate axis. These solutions are sparser than that obtained via `

2

regularization, indeed they are the sparsest possible. Moreover, these ideas extend
to the general problem in which x has multiple nonzero components. Unfortunately,
finding the solution to a linear system �x = b with the fewest nonzero components
is computationally intractable if the system is large; see [22].

What we need is a regularization technique that promotes sparse solutions yet
remains computationally tractable. Regularizing with the `

1 norm, defined as

kxk1 =
NX

i=1

|x
i

|, (1.2)

turns out to do the trick! For the underlying intuition see the panel on the right
in Figure 1.2, which shows the graph of an `

1 ball in R2 (|x1| + |x2| = d) that just
contacts the solution set to �x = b. This point is the minimum `

1 norm solution and
agrees with a sparse solution produced by `

0 regularization.
Although minimizing kxk1 subject to linear constraints �x = b may look di�cult,

because |x
i

| is not di↵erentiable, it turns out that this problem falls into the realm of
convex optimization. Indeed, the problem can be converted to a standard problem in
linear programming, as described in Section 3 of [16].

For the 100 coin problem, minimizing kxk1 subject to constraints �x = b (with
a specific randomly chosen �) yields x13 = �0.3, x37 = 0.44, x71 = �0.33, and all
other x

i

= 0, exactly, as illustrated by the right panel in Figure 1.1! But maybe we
got lucky—after all, the n = 20 subsets were randomly chosen. However, repeating
the above experiment 1000 times (each time choosing a new random �) yields 980
successes, each an exact solution. If we increase the number of weighings for each
experiment to n = 25 we obtain a perfect record, 1000 successes in 1000 trials. De-
creasing the number of weighings to n = 15 in each experiment results in 787 perfect
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Fig. 1.3. Success rates of `

1-regularization for N = 100 coins, as a function of number n of
weighings.

solutions in 1000 trials, and n = 10 results in only 141 successes. Figure 1.3 illustrates
the situation, for one to five bad coins. As the number of bad coins goes up, we need
more weighings to reliably identify them.

1.1. Overview of Compressed Sensing. The counterfeit coin problem illus-
trates a few key features of compressed sensing (CS): We seek to recover a sparse
vector x 2 RN , that is, a vector with most of its components equal to zero, from
measurements made by taking n ⌧ N inner products, b

i

= hr
i

,xi, where each r
i

is a
row vector that is typically generated randomly. In the coin problem r

i

is a random
0�1 vector encoding which coins were used in the ith weighing. In other applications
the r

i

may have random components drawn from a normal or other distribution. To
recover x we form an n ⇥ N matrix � from these row vectors r

i

and then find the
minimum `

1 norm solution to the linear system �x = b.
The field of CS emerged as a hot topic with the publication of seminal papers

in 2006 by Emmanuel Candès, Justin Romberg, and Terence Tao [11] and by David
Donoho [21]. Traditional signal processing based on Shannon’s information theory
focuses on uniform sampling, that is, systematically collecting data at evenly spaced
points on a grid to achieve some desired resolution. Think of a digital camera taking
a high-resolution photograph by recording a value at every single pixel on a finely
spaced grid. This approach takes the pessimistic view that we know nothing a priori

about the data. The leap that propels CS is the realization that most data, e.g.,
photos of people or landscapes, have some inherent structure that we can use to our
advantage. This inherent structure can often be viewed as a type of sparsity. In
contrast to the typical megapixel digital camera, a CS-designed single-pixel camera
takes relatively few measurements that are equivalent to sums of randomly located
pixels [24], analogous to our example of using a scale to measure the total mass of ran-
domly selected subsets of coins. The article [27] provides additional background and
references concerning problems involving sparse approximation and signal recovery,
closely related to and often predating CS.

The key mathematical ideas in CS, as we will show, can be easily understood and
form an elegant theory. It should be noted, however, that developing practical CS
devices is extremely challenging, requiring new sensing technology able to physically
mimic the action of random measurement matrices.

For overviews of CS accessible to a general audience, see [14, 28, 31, 32, 33], as
well as [26] which includes a historical overview. For a wonderful audio demonstration
of CS, see the website [2]. More complete mathematical developments of CS can be
found in [13, 9, 4, 18], to mention a few examples from the rapidly expanding CS
literature. A comprehensive listing of CS-related articles and other materials can be
found at http://dsp.rice.edu/cs.
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1.2. The General Setting. In the counterfeit coin problem of Section 1 we
sought to recover a sparse vector x 2 RN from an underdetermined system �x = b.
In other settings the vector x may not itself be sparse, but rather it may be the case
that x =  s for some n⇥ n orthogonal matrix  and sparse vector s; that is, x may
have a sparse representation in an alternate basis for RN , spanned by the columns of
 . In this case the information b we collect leads to a system � s = b, from which
we wish to recover s (and then x). An important topic in compressed sensing is that
of incoherence, a lack of correlation between the sensing modality embodied by the
rows of � and the basis formed by the columns of  , that facilitates the recovery of
sparse signals, a condition often met when � is randomly generated. In the interest
of brevity we’ll focus on the case in which  is the identity matrix—so x is itself
sparse—and � is randomly generated in some manner. For more on the notion of
incoherence see [9].

We thus focus on solving a linear system of equations

�x = b, (1.3)

where the sensing matrix � is n ⇥ N and n may be much smaller than N . We will
assume that (1.3) is consistent. In this case any solution will not be unique. However,
we’re going to add the additional assumption that the solution vector x is “k-sparse”
for some value of k ⌧ n, that is, x has at most k nonzero components. We’ll denote
the set of such vectors in RN by ⌃

k

(the dependence on N will not be explicit). A
few natural questions arise:

1. Does the additional information that the solution is k-sparse nail down a
unique solution? If so, for what relative values of k, n, and N? What condi-
tions on the matrix � are su�cient?

2. Under what conditions will minimizing the `

1 norm subject to �x = b be
successful in recovering sparse solutions? Why does it work?

We’ll address each of these in the following sections. Section 2 will develop conditions
guaranteeing uniqueness of k-sparse solutions by examining the null space of � and
leads to the “restricted isometry property,” which is the focus of Section 3. Section
2 requires familiarity with basic linear algebra and Section 3 assumes knowledge of
elementary probability. The proof that `

1 minimization recovers the k-sparse solution
is given in Section 4, and we make some final remarks in Section 5.

Exercise 1. Suppose that for � as in (1.1) we have b1 = 0, b2 = 0.2, and
b3 = 0.2 where b = �x and x

i

denotes the deviation of the ith coin from the nominal
value. If we know at most one coin is counterfeit, which one is it? Make up an
example (by making appropriate choices for x) to show that two bad coins cannot be
uniquely identified.

Exercise 2. Is ⌃
k

a subspace of RN? Why or why not?
Exercise 3. Let kxk0 denote the number of nonzero components in the vector

x. Why isn’t this a norm?
Exercise 4. Let � =

⇥
a1 a2

⇤
be any 1⇥ 2 (n = 1, N = 2) matrix in which

both entries are nonzero, and consider the equation �x = b, where x 2 R2 and b 6= 0
is a scalar. Show that there are always two 1-sparse solutions to �x = b. Thus we
can’t solve �x = b uniquely for x in this situation, even under the assumption that x
is 1-sparse.
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Exercise 5. Let

� =


1 1/

p
2 0 �1/

p
2

0 1/

p
2 1 1/

p
2

�
.

a. Suppose that for some fixed b 2 R2 the equation �x = b has a 1-sparse
solution. Show this solution is unique, and so we can recover any 1-sparse
solution x 2 R4.

b. Let b a vector in R2. Show that the equation �x = b can have as many as
six distinct 2-sparse solutions.

Exercise 6. Consider the underdetermined linear equation �x = b where � is
the matrix in Exercise 5, x 2 R4, and b = [0, 3]t (here the superscript t denotes the
transpose).

a. Verify that the vector x = [0, 0, 3, 0]t is a 1-sparse solution.
b. Find the minimum norm solution to �x = b using the `

2 norm. (Suggestion:
Solve �x = b for x1 and x3 in terms of x2 and x4, then express kxk22 in terms
of just x2 and x4 and minimize in these two variables.) What’s the sparsity
of this solution?

c. Find the minimum norm solution to �x = b using the `

1 norm kxk1 and
the same approach as part (b). Although kxk1 isn’t di↵erentiable, it’s easy
to find the minimum graphically after you’ve expressed kxk1 as a function of
two variables, by plotting kxk1 as a function of x2 and x4.

2. Uniqueness of k-Sparse Solutions. Our first task is to establish conditions
guaranteeing that there is only one k-sparse solution to �x = b. This gives us some
hope of being able to distinguish it from all of the other solutions.

2.1. The Null Space of �. Let x⇤ satisfy �x⇤ = b. All other solutions to
�x = b are of the form x = x⇤ + ⌘ where �⌘ = 0. That is, ⌘ is in N (�), the null
space of �. Let us suppose that x⇤ 2 ⌃

k

for some k and examine conditions under
which x⇤ is certain to be the only k-sparse solution.

Suppose, to the contrary, there is another (distinct) k-sparse solution x⇤⇤. We
have �(x⇤ � x⇤⇤) = 0, that is, x⇤ � x⇤⇤ 2 N (�), but x⇤ � x⇤⇤ is not the zero vector.
Observe that if x⇤ and x⇤⇤ are any vectors in ⌃

k

then x⇤�x⇤⇤ 2 ⌃2k

(Exercise 7). We
conclude that if �x = b has more than one k-sparse solution, N (�) must contain a
nonzero 2k-sparse vector. The contrapositive of this statement yields the next lemma.

Lemma 2.1. Suppose that ⌃2k

\N (�) = {0}, that is, all nonzero elements in the

null space of � have at least 2k +1 non-zero components. Then any k-sparse solution

to �x = b is unique.

A simple variation on the condition ⌃2k

\N (�) = {0} is given by the following:

Lemma 2.2. The condition ⌃2k

\N (�) = {0} holds if and only if every subset

of 2k columns of � is linearly independent.

Proof: Suppose ⌃2k

\ N (�) = {0}. Let �

j

denote the jth column of � and
let T ✓ {1, . . . , N} be any subset of indices with cardinality |T | = 2k. Consider the
subset {�

j

: j 2 T} of 2k columns of �. If
P

j2T

x

j

�

j

= 0 for some scalars x

j

, then
�x = 0 for the vector x with components x

j

for j 2 T and x

j

= 0 otherwise. Thus
x 2 ⌃2k

\ N (�) = {0}, which implies x = 0. Therefore x

j

= 0 for all j and so
{�

j

: j 2 T} is a linearly independent set.
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Conversely, suppose every subset {�
j

: j 2 T} of 2k columns of � is linearly
independent. Consider any vector x 2 ⌃2k

\N (�) and let T ✓ {1, . . . , N} be any set
of 2k indices so that if x

j

6= 0 then j 2 T (and x

j

= 0 if j /2 T ). We use this to form
a subset {�

j

: j 2 T} of 2k columns of � that satisfies
X

j2T

x

j

�

j

= �x = 0,

because x 2 N (�). But {�
j

: j 2 T} is linearly independent by assumption, so x

j

= 0
for every j = 1, . . . , N , that is, x = 0. Therefore ⌃2k

\N (�) = {0}.⇤

Unfortunately, the condition ⌃2k

\N (�) = {0} could be very hard to check for
any given matrix. A brute force approach based on Lemma 2.2 would require us
to check the linear independence of all

�
N

2k

�
subsets of columns for �, an essentially

impossible task if N,n, and k are very large. We need to find a better strategy.

Exercise 7. Show that if x⇤ and x⇤⇤ are both in ⌃
k

then any linear combination
c1x⇤ + c2x⇤⇤ lies in ⌃2k

.
Exercise 8. If ⌃2k

\N (�) = {0} holds for an n⇥N matrix �, why must we
have 2k  n? (Hint: use Lemma 2.2.)

Exercise 9. Let � be the matrix from Exercise 5. Verify that the vectors

v1 = [1 �
p

2 1 0]t, v2 = [
p

2 � 1 0 1]t

form a basis for N (�), and use this to show that there are no nonzero 2-sparse vectors
in N (�).

Exercise 10. Suppose � has the property that N (�) \⌃
m

= {0} for some m.
a. Show that if �0 = c� for some nonzero scalar c then N (�0) \ ⌃

m

= {0}.
b. Show that if �0 is obtained from � by multiplying the jth row of � by some

nonzero scalar c

j

(for one specific value of j) then N (�0) \ ⌃
m

= {0}. Hint:
Show that if x satisfies �0x = 0 then �x = 0 too.

c. Use part (b) to show that if �0 is obtained from � by multiplying each row
of � by some nonzero scalar (not necessarily the same for each row) then
N (�0) \ ⌃

m

= {0}.
d. Show that if �0 is obtained by multiplying any given column of � by a nonzero

scalar d then N (�0) \ ⌃
m

= {0}. Hint: If �0 is obtained by multiplying the
jth column of � by d and x0 = (x1, x2, . . . , xN

) satisfies �0x0 = 0 then
x = (x1, x2, . . . , xj�1, dx

j

, x

j+1, . . . , xN

) satisfies �x = 0.
e. Use part (d) to argue that if �0 is obtained from � by multiplying each column

of � by some nonzero scalar (not necessarily the same for each column) then
N (�0) \ ⌃

m

= {0}.

2.2. The Restricted Isometry Property. If a brute force approach to veri-
fying the condition ⌃2k

\N (�) = {0} isn’t feasible, how do we check that it holds in
any specific case, or better yet, build it into the sensing matrix �?

The condition ⌃2k

\N (�) = {0} requires that no nonzero vector x 2 ⌃2k

satisfies
�x = 0. There is no loss of generality in confining our attention to unit vectors (with
respect to the `

2 norm), because if x 6= 0 then �x = 0 if and only if �u = 0 where
u = x/kxk2, a unit vector. We thus seek a condition to assure that no unit vector
u 2 ⌃2k

satisfies �u = 0. One simple way to do this is to require that there exists a
positive constant c1 such that for all 2k-sparse unit vectors u we have k�uk22 � c1.
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This rules out �u = 0, because then k�uk22 = 0. We’ve thus established the following
lemma:

Lemma 2.3. If there exists a positive constant c1 such that c1  k�uk22 for all

2k-sparse unit vectors then ⌃2k

\N (�) = {0}.

A variation on Lemma 2.3 turns out to be useful for analyzing the e↵ectiveness
of `

1 minimization for recovering sparse solutions. First, whether or not c1  k�uk22
holds, there will always exist some constant c2 > 0 so that k�uk22  c2 for all unit
vectors u 2 ⌃2k

. The reason is that the mapping x ! k�xk22 is continuous from RN

to R (Exercise 14) and the set of 2k-sparse unit vectors in RN is compact (Exercise
15), so k�uk22 must attain a maximum value on this set. We can take c2 to be this
maximum value. The two conditions can be amalgamated into the statement that
there exist positive constants c1 and c2 so that

c1  k�uk22  c2 (2.1)

for all unit vectors u 2 ⌃2k

.
From Exercise 10 part (a), rescaling the matrix � by a constant doesn’t change

the condition ⌃2k

\ N (�) = {0} (or the problem of solving �x = b, if we rescale
b too). In what follows it will be convenient to multiply (2.1) through by 2/(c1 +
c2) and define � = (c2 � c1)/(c2 + c1), where we’ll always have 0  �  1. If
we redefine � appropriately by multiplying by

p
2/(c1 + c2) then (2.1) yields the

equivalent inequality

1� �  k�uk22  1 + � (2.2)

for the rescaled system with � and b both rescaled by a factor
p

2/(c1 + c2).
Note that c1 > 0 excludes the possibility � = 1. This motivates the following key

definition, introduced by Candès and Tao [12]:

Definition 2.4. An n ⇥ N matrix � satisfies the restricted isometry property

(RIP) of order m if there is some constant �

m

2 (0, 1) such that

1� �

m

 k�uk22  1 + �

m

(2.3)

for all m-sparse unit vectors u 2 RN

.

With Definition 2.4 can state the following variation of Lemma 2.3:

Lemma 2.5. If a matrix � satisfies the RIP of order 2k for some k � 1 then

⌃2k

\N (�) = {0} and any k-sparse solution to �x = b is unique.

Again, the right hand inequality of (2.3) is not necessary for ⌃2k

\N (�) = {0},
but the size of the constant �

m

has implications for the e↵ectiveness and stability of
`

1 minimization in recovering sparse solutions to �x = b, as we’ll see in Section 4.

Exercise 11. Let � = [1/2 4/3].
a. Show the � satisfies the RIP (2.3) of order 1 with constant �1 = 7/9.
b. Show that � does NOT satisfy the RIP of order 2. (Remember, we need

�2 2 (0, 1).)
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Exercise 12. Show that if a matrix � satisfies the RIP of order k, then it also
satisfies the RIP of order j for any positive integer j less than k.

Exercise 13. Use the fact that any vector x 2 RN can be written as x = kxk2u,
where u = x/kxk2 is a unit vector, to show that Definition 2.4 is equivalent to
requiring that there exists some �

m

2 (0, 1) such that

(1� �

m

)kxk22  k�xk22  (1 + �

m

)kxk22 (2.4)

for any m-sparse vector x in RN (not restricting x to be a unit vector).

2.3. Interpretation of the RIP. To interpret the RIP (2.4) from a more geo-
metric perspective, suppose (2.4) holds for the case m = 2k. Let x and x0 be any two
vectors in ⌃

k

. From the left inequality in (2.4) we then have

k�x� �x0k2 = k�(x� x0)k2 �
p

1� �2k

kx� x0k2 (2.5)

since x � x0 2 ⌃2k

. Equation (2.5) shows that the distance between �x and �x0 is
always some fraction of the distance between the vectors x and x0 themselves. The
closer �2k

is to zero, the more � behaves like an isometry (distance preserving map)
on ⌃

k

, keeping elements of ⌃
k

well separated under multiplication by �. In other
words, the images �x for x 2 ⌃

k

will be easy to distinguish from each other.
Unfortunately, the RIP itself isn’t really any easier to verify for a given matrix

� than the condition that subsets of columns of � are independent. However, the
advantage of the RIP is that it can be shown to hold with high probability for large
classes of matrices generated by certain random procedures, so we can be confident
that these matrices will work in a compressed sensing application. We give an exam-
ple of such a class of matrices in Section 3.

Exercise 14. Prove that the mapping g : RN ! R defined by g(x) := k�xk22
is continuous.

Exercise 15. Prove that the set K

m

of m-sparse unit vectors in RN is com-
pact, i.e., closed and bounded. Suggestion: K

m

is clearly bounded, so show that the
complement of K

m

is open (given any vector with at least m+1 nonzero components
or that is not a unit vector, show there exists an open neighborhood of that vector
that does not intersect K

m

).
Exercise 16. Here’s an alternative version of the RIP of Definition 2.4, based

on eigenvalues. First, consider a subset T ✓ {1, 2, . . . , N}, say with elements T

i

and
cardinality |T |. If � is n⇥N , let �

T

be the n⇥ |T | matrix obtained by deleting those
columns of � whose index does not lie in T .

a. Show that the condition that there exists a constant �

m

2 (0, 1) such that

(1� �

m

)  k�
T

uk22  (1 + �

m

) (2.6)

for all subsets T with |T |  m and all unit vectors u 2 R|T | is equivalent to
Definition 2.4.

b. It’s a fact from linear algebra that if M is an n ⇥ p matrix and u is a unit
vector in Rp then

�

0  kMuk22  �

00 (2.7)

where �

0 and �

00 are the smallest and largest eigenvalues of the p⇥ p matrix
MtM (MtM is symmetric positive semidefinite, so all eigenvalues are real and
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nonnegative; the inequality (2.7) can be proved by writing MtM = QDQt

where Q is orthogonal). Use this fact to show that the condition of equation
(2.6) in part (a) is equivalent to the statement that for any set T with |T |  m

the eigenvalues of �t

T

�
T

lie in the interval (1� �

m

, 1 + �

m

).
c. Use the condition of part (b) to show that the matrix � in Exercise 5 satisfies

the RIP of order 2 with �2 =
p

2/2 ⇡ 0.707. You’ll need to form the 2 ⇥ 2
matrix �t

T

�
T

for all six subsets T of {1, 2, 3, 4} with |T | = 2 and compute
the eigenvalues; use a computer algebra system or Matlab.

3. RIP for Normal Random Matrices. Although the RIP may be hard to
verify for any specific matrix, it turns out that matrices constructed via certain ran-
dom processes can be shown to possess the RIP with high probability. This is one
reason why the matrices used in compressed sensing generally involve some kind of
randomness. Many classes of random matrices have been shown to be suitable. The
focus of this section is to examine one such class, namely, matrices with entries that
are independent normally distributed random variables. The results of this section are
intended to convince the reader that there are in fact matrices that possess the RIP,
but the results are not necessary to understand why `

1 minimization works, which is
the topic of Section 4.

In the coin problem above we were able to find a small number of defective coins
with high probability, by using only a fraction q = 0.25 of the usually necessary
N = 100 equations. More generally, we seek conditions under which we have a good
chance of identifying a k-sparse vector in RN using only n = qN (q ⌧ 1) linear equa-
tions. The following theorem o↵ers an answer by telling us when the RIP will hold
with high probability for random matrices of certain types.

Theorem 3.1. Let � be an n ⇥N matrix with n = qN for some q 2 (0, 1) and

entries that are independent samples of a normal random variable with mean 0 and

variance 1/n. For any fixed ✏ 2 (0, 1), � 2 (0, 1) and n � 12/� the matrix � will

satisfy the RIP of order m with constant �

m

= � with probability at least 1� ✏ if N is

chosen large enough to satisfy the inequality

�c0qN + (m + 1/2) ln(N) + c1  ln(✏) (3.1)

where c0 = �

2
/144� �

3
/1296 > 0 and c1 = m ln( 36e

m�

) + 1
2 ln(q/⇡).

In short, for these types of random matrices the RIP of a given order can be made
to hold with probability as close to one as we like, provided k, n, and N stand in a
certain relation to each other.

The focus of the rest of this section is to give a simple proof of Theorem 3.1,
similar to that in [4], which we break up into a few lemmas requiring no more than
elementary probability and calculus. The proof hinges on the concentration inequality

stated in Lemma 3.2.
Exercise 17. Show that for any fixed q, ✏, � in (0, 1), and m � 1, the inequality

(3.1) will hold for all su�ciently large N . With � = 0.1, ✏ = 0.01, m = 10, and
q = 0.25, how large must N be for the inequality to be satisfied?

3.1. Showing that the RIP Holds with High Probability. Before stating
the next lemma, we define the following function p(n, ✏) that we will use to help bound



COMPRESSED SENSING 11

the probability that a matrix � does not exhibit the desired properties:

p(n, ✏) =
r

n

⇡

e

�n(✏2/4�✏

3
/6)

. (3.2)

For any fixed ✏ > 0, the function p(n, ✏) can be made arbitrarily (and rapidly) close
to zero by taking n large (see Figure 3.1). In what follows we use the notation P (E)
to denote the probability of an event E.

Lemma 3.2. Let � be an n⇥N matrix whose entries �

ij

are independent samples

of a normal random variable with mean 0 and variance 1/n. For any fixed ✏ 2 (0, 1)
and unit vector u 2 RN

the inequality

P (
��k�uk2 � 1

�� � ✏)  p(n, ✏)

holds for n � 2/✏. (Note that the result doesn’t actually depend on N .)

Proof: Fix ✏ 2 (0, 1) and let � be an n⇥N matrix that satisfies the hypotheses
of the lemma. Let u be any fixed unit vector in RN and set y = �u, so y 2
Rn. Recall from elementary probability that if X1, . . . ,XN

are independent normal
random variables, all with mean µ and variance �

2, then X =
P

j

c

j

X

j

has mean
µ

P
j

c

j

and variance �

2
P

j

c

2
j

. It follows that each component y

i

=
P

N

j=1 �

ij

u

j

of y
is an independent normal random variable with mean 0 and variance 1/n. Therefore
nkyk22 =

P
n

i=1 ny

2
i

is a �

2 variable with n degrees of freedom and probability density
function (pdf)

g

n

(x) =
1

2n/2�(n/2)
x

n/2�1
e

�x/2

for x � 0 (see Section 3.3 of [29]). Here � is the Gamma function, defined for any
real number ↵ > 0 as

�(↵) =
Z 1

0
x

↵�1
e

�x

dx. (3.3)

For positive integers n, �(n) = (n� 1)!, �(1/2) =
p

⇡, and �(n + 1/2) = (2n)!
4n

n!

p
⇡.

The pdf of kyk22 itself is given by

f

n

(x) = ng

n

(nx) =
(n/2)n/2

�(n/2)
x

n/2�1
e

�nx/2
. (3.4)

The mean and variance of kyk22 are 1 and 2/n (Exercise 18), respectively, so as n

increases the quantity kyk22 is more and more strongly “concentrated” near 1 (see
Figure 3.1). However, to prove the lemma we need to quantify the last statement.
Specifically, we have

P (
��k�uk2 � 1

�� � ✏) =
Z 1�✏

0
f

n

(x) dx +
Z 1

1+✏

f

n

(x) dx. (3.5)

We will estimate the value of each integral on the right in (3.5). To simplify the
notation, we use ↵ = n/2. Note that we are only interested in the case ↵ � 1/✏ > 1.



12 K. BRYAN AND T. LEISE

0.6 .8 1 1.2 1.40

0.5

1

‖Φu‖2

Pr
op

or
tio

n

 

 

n=2500

n=500

n=100

103 104 105 10610−30

10−20

10−10

100

n

p
(n

,
ε
)

 

 

ε = 0.01

ε = 0.02

ε = 0.05

Fig. 3.1. Illustration of Lemma 3.2. Left: A histogram with bin size 0.1 (markers indicate
center of each bin) showing the proportion out of 4,000 normal random matrices � of size n⇥N for
which k�uk22 falls into each bin of width 0.1, where u is a fixed randomly generated unit vector and
N = 10, 000. The marker corresponding to interval [0.95, 1.05] shows the proportion of matrices �
that satisfied |k�uk22 � 1|  ✏ = 0.05: 26% for n = 100, 57% for n = 500, and 92% for n = 2, 500.
Right: Graphs of the upper bound p(n, ✏) for various values of ✏.

We begin with the first integral on the right in (3.5). For any ↵ � 1, x

↵�1
e

�↵x

attains its maximum value on the interval [0,1) when x = 1 � 1/↵ � 1 � ✏, and is
strictly increasing on the interval (0, 1� 1/↵). Thus x

↵�1
e

�↵x attains its maximum
value on [0, 1� ✏] at x = 1� ✏, and this maximum value is M = (1� ✏)↵�1

e

�↵(1�✏).
It follows that for ↵ � 1/✏ we have

Z 1�✏

0
x

↵�1
e

�↵x

dx  (1� ✏)M = (1� ✏)↵

e

�↵(1�✏)
. (3.6)

From (3.4) and by using (3.6) with ↵ = n/2 we then have, for n � 2/✏,
Z 1�✏

0
f

n

(x) dx  (n/2)n/2

�(n/2)
e

�n(1�✏)/2(1� ✏)n/2
. (3.7)

Applying the bound (see [5])

↵

↵

�(↵)
 e

↵

p
↵p

2⇡

(3.8)

with ↵ = n/2 � 1 in (3.7) yields
Z 1�✏

0
f

n

(x) dx 
p

n

2
p

⇡

e

n✏/2(1� ✏)n/2
. (3.9)

From Exercise 20(d) we have (1� ✏)1/✏  e

�1�✏/2 for any ✏ 2 (0, 1). As a result

(1� ✏)↵ = ((1� ✏)1/✏)↵✏  e

(�1�✏/2)↵✏ = e

�↵✏

e

�↵✏

2
/2

. (3.10)

Applying the estimate (3.10) to the bound (3.9) yields
Z 1�✏

0
f

n

(x) dx 
p

n

2
p

⇡

e

�n✏

2
/4 (3.11)

for n � 2/✏. This gives us the bound we need on the first integral in (3.5).
Now we bound the second integral on the right in (3.5). From Exercise 21,

x

n/2�1
e

�nx/2 
✓

1 + ✏

e

◆
n/2�1

e

� 1+n✏/2
1+✏ x (3.12)
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for n � 2 and ✏ > �1. Integrate each side of (3.12) from x = 1+ ✏ to x = 1 to obtain
Z 1

1+✏

x

n/2�1
e

�nx/2
dx  (1 + ✏)n/2

e

�n
2 (1+✏)

/(1 + n✏/2). (3.13)

From Exercise 20(c) we have (1+✏)1/✏  e

1�✏/2+✏

2
/3 for ✏ 2 (0, 1), so that from (3.13)

and imitating (3.10) we obtain
Z 1

1+✏

x

n/2�1
e

�nx/2
dx  e

�n/2�n✏

2
/4+n✏

3
/6

1 + n✏/2
. (3.14)

Use ↵ = n/2 in the bound (3.8) with (3.14) to find
Z 1

1+✏

f

n

(x) dx 
p

ne

�n✏

2
/4+n✏

3
/6

(2 + n✏)
p

⇡

. (3.15)

Combining equations (3.11) and (3.15) yields the estimate in the lemma (noting that
e

n✏

3
/6

> 1 and 2 + n✏ > 2).⇤

Exercise 18. Let u be a unit vector in RN and � an n⇥N matrix whose entries
are sampled from independent normal random variables with mean 0 and variance
1/n. Prove that the expected value of k�uk22 equals 1 and the variance equals 2/n.

Exercise 19. Let ✏ = 0.1 in the bound on the right in (3.5). Compute the value
of the function p(n, ✏) in Lemma 3.2 (p as defined in (3.2)) for n = 10, 102

, 103
, 104.

How large must n be before the bound on P (
��k�uk2 � 1

�� � ✏) is below 10�12? Repeat
for ✏ = 0.01.

Exercise 20. Prove that (1 + ✏)1/✏  e

1�✏/2+✏

2
/3 for all ✏ 2 (0, 1), as follows:

a. Show that

1� ✏/2 + ✏

2
/3� ✏

3
/4 + ✏

4
/5� · · ·  1� ✏/2 + ✏

2
/3.

for ✏ 2 (0, 1). (Look at pairs of terms in the alternating series.)
b. Find the Taylor series for f(x) = ln(1 + x) about x = 0 and use this to show

that the left side of the displayed inequality in part (a) is the Taylor series
for the real-analytic function g defined by

g(✏) =
⇢

ln(1 + ✏)/✏, ✏ 6= 0
1, ✏ = 0

c. Exponentiate g(✏)  1� ✏/2 + ✏

2
/3 to obtain the desired inequality.

d. Imitate (a)-(c) to show that (1 � ✏)1/✏  e

�1�✏/2 for all ✏ 2 (0, 1) by using
the Taylor series for

g̃(✏) =
⇢

ln(1� ✏)/✏, ✏ 6= 0
1, ✏ = 0

Exercise 21. Prove that if ↵ � 1 and ✏ > �1 then

x

↵�1
e

�↵x 
✓

1 + ✏

e

◆
↵�1

e

� 1+↵✏
1+✏ x (3.16)

for all x � 0. Hint: define the function

g(x) =
✓

1 + ✏

e

◆
↵�1

x

↵�1
e

((1+↵✏)/(1+✏)�↵)x
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(g(x) is just the left side of (3.16) divided by the right side). Then show that g(x) > 0
for x > 0, that

lim
x!0+

g(x) = lim
x!1

g(x) = 0,

and that g has a unique critical point (a maximum) at x = 1+✏, with value g(1+✏) = 1.

3.2. Extending Lemma 3.2. Lemma 3.2 holds only for a fixed unit vector u,
but we need a version of that lemma’s inequality that holds simultaneously for all m-
sparse unit vectors, with high probability. The argument that follows—in particular,
Lemmas 3.3 and 3.5—are adaptations of similar arguments in [4].

Consider a subset T ⇢ {1, 2, . . . , N} with |T | = m. For any such subset T =
{T1, . . . , Tm

} let X

T

denote the set of all vectors x 2 RN that are m-sparse, with
x

i

= 0 if i 62 T . Let U

T

denote the set of all unit vectors in X

T

. Our goal in what
follows is to extend the central inequality of Lemma 3.2 so it holds for all m-sparse
unit vectors simultaneously, with high probability. We’ll do this by first showing that
for any fixed T the inequality holds with high probability on a finite subset A

Q

⇢ U

T

(Lemma 3.3) and then extend the result to hold for all vectors u 2 U

T

(Lemma
3.5). We then prove Theorem 3.1 by extending the result to hold for all such sets T

(simultaneously), and thereby all m-sparse vectors.
In Lemmas 3.3 and 3.5 we assume that � is an n ⇥ N matrix whose entries are

independent samples of a normal random variable with mean 0 and variance 1/n.

Lemma 3.3. For any fixed subset T ⇢ {1, 2, . . . , N} with |T | = m, � 2 (0, 1), any

subset A

Q

⇢ U

T

with cardinality Q = |A
Q

| < 1, and n � 2/�, the inequality

1� �  k�uk22  1 + �

holds simultaneously for all u 2 A

Q

with probability greater than 1�Qp(n, �).

Proof: In Lemma 3.2 let’s choose ✏ = �, so that for any � 2 (0, 1) and fixed
vector p

k

2 A

Q

we have that
��k�p

k

k22 � 1
�� � � holds with probability less than

p(n, �), defined in (3.2), when n � 2/�. Equivalently, the inequality

1� �  k�p
k

k22  1 + � (3.17)

holds with probability at least 1 � p(n, �), or fails to hold with probability at most
p(n, �).

Recall Boole’s inequality, also called the “union bound” [17]:

P (E1 [ E2 [ · · · [ E

Q

)  P (E1) + · · · + P (E
Q

), (3.18)

where the E

k

are any events, which need not be independent. Let E

k

denote the
event that the inequality (3.17) fails to hold for the point p

k

, where 1  k  Q. We
conclude from (3.18) that the probability of (3.17) failing to hold for at least one of
the p

k

is less than Qp(n, �). This means that the probability that (3.17) does in fact
hold simultaneously for all p

k

2 A

Q

is greater than or equal to 1�Qp(n, �), which is
exactly the probability specified in the lemma.⇤

The following lemma tells us how to obtain a specific suitable subset A

Q

⇢ U

T

for our purposes, through a bound for the covering number of the unit sphere [34]:
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Lemma 3.4. For each ✏ 2 (0, 1) and positive integer m � 2, there exists a subset

A

Q

(✏) of the unit sphere S

m�1 = {u 2 Rm : kuk2 = 1} with at most Q(✏) := (3/✏)m

points that satisfies the following property: for every u 2 S

m�1
there exists p 2 A

Q

(✏)
such that ku� pk2 < ✏.

Proof: Fix ✏ 2 (0, 1) and an integer m � 2. Inductively construct the set A

Q

as
follows: Begin by choosing any p1 2 S

m�1. After choosing p
k

, choose p
k+1 2 S

m�1

such that kp
k+1 � p

j

k2 � ✏ for j = 1, . . . , k. Continue selecting points until no
further such points can be found; the process will stop at some finite number Q of
points because S

m�1 is compact (every open cover has a finite subcover). Define
A

Q

= {p1, . . . ,pQ

}. We claim that for all u 2 S

m�1, there exists p
k

2 A

Q

such that
ku� p

k

k < ✏; otherwise, there would exist p
Q+1 2 S

m�1 such that kp
Q+1 � p

k

k � ✏

for k = 1, . . . , Q, contradicting the stopping condition. Balls B

✏/2(pk

) of radius ✏/2
centered at the points in A

Q

are disjoint, while the union [Q

k=1B✏/2(pk

) lies in the
ball B1+✏/2(0). The total volume of the union must be less than the volume of the
containing ball, so Q · Vol(B

✏/2)  Vol(B1+✏/2). Since Vol(B
r

) = r

mVol(B1) in Rm,
Q  (1 + 2/✏)m = ((✏ + 2)/✏)m  (3/✏)m. ⇤

Lemma 3.3 asserts that 1� �  k�uk22  1 + � holds with high probability for all
u 2 A

Q

. The next lemma extends this to all u 2 U

T

by using the set A

Q

= A

Q

(✏)
from Lemma 3.4 with ✏ = �/4 (but note the norm in (3.19) below is not squared).

Lemma 3.5. For any fixed subset T ⇢ {1, 2, . . . , N} with |T | = m, � 2 (0, 1), and

n � 4/�, the inequality

1� �  k�uk2  1 + � (3.19)

holds simultaneously for all u 2 U

T

with probability greater than p̃ = 1�Q(�/4)p(n, �/2).
Proof: For a fixed � define a constant B (which will be a random variable that de-
pends on �) as

B = �1 + sup
u2UT

k�uk2. (3.20)

Actually, since U

T

is compact in RN and the mapping x! k�xk2 is continuous (see
Exercises 14 and 15), we can replace “sup” with “max.” This also makes it clear that
B < 1. From (3.20) we obviously have k�uk2  1 + B for any u 2 U

T

.
If x 2 X

T

with x 6= 0, then u = x/kxk2 2 U

T

. The inequality k�uk2  1 + B is
equivalent to the inequality

k�xk2  (1 + B)kxk2. (3.21)

We will show that B  � with probability at least p̃, yielding the right-side inequality
in (3.19).

To do this, let u 2 U

T

. Fix a set A

Q

(�/4) as in Lemma 3.4 and choose a point
p

k

2 A

Q

(�/4) so that ku�p
k

k2  �/4. The vector u�p
k

2 X

T

, so the bound (3.21)
applies to show k�(u�p

k

)k2  (1+B)�/4. Applying Lemma 3.3 (using �/2 in place
of �), we have k�p

k

k2 
p

1 + �/2  (1+�/2) with probability at least p̃ for n � 4/�.
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As a result, with probability at least p̃ we have

k�uk2 = k�p
k

+ �(u� p
k

)k2
 k�p

k

k2 + k�(u� p
k

)k2 (by the triangle inequality)
 (1 + �/2)kp

k

k2 + (1 + B)�/4 (using (3.21))
 1 + �/2 + (1 + B)�/4 (because kp

k

k2 = 1)
= 1 + (3/4 + B/4)�. (3.22)

Equivalently, we have k�uk2 > 1 + (3/4 + B/4)� with probability less than 1 � p̃.
Since k�uk2  1 + B we conclude that 1 + (3/4 + B/4)� < 1 + B with probability
less than 1� p̃, or equivalently, 1 + B  1 + (3/4 + B/4)� with probability at least p̃.
A little rearrangement yields B  3�

4��

for � 2 (0, 1) with probability at least p̃; since
3�

4��

 � for � 2 (0, 1), we obtain B  � with probability at least p̃, which verifies the
right side inequality in (3.19).

To demonstrate the left side inequality in (3.19) start with

k�p
k

k2  k�(p
k

� u)k2 + k�uk2

from the triangle inequality. Rearrange to obtain k�uk2 � k�p
k

k2 � k�(p
k

� u)k2.
Then again from Lemma 3.3 (using �/2 in place of �), with probability at least p̃ we
have

k�uk2 � k�p
k

k2 � k�(p
k

� u)k2
� (1� �/2)� (1 + B)kp

k

� uk2

� (1� �/2)� (1 + B)
�

4

� (1� �/2)� (1 + �)
�

4

= 1� 3
4
� � 1

4
�

2
, (3.23)

where we’ve applied the bound (3.21) to p
k

�u and used kp
k

k2 = 1 and kp
k

�uk2 
�/4. It’s easy to see that 3�/4 + �

2
/4 < � for � 2 (0, 1), so that 1� 3

4� � 1
4�

2
> 1� �.

From this and (3.23) we obtain k�uk2 � 1� � with probability at least p̃ for n � 4/�,
which is the left side inequality in (3.19). ⇤

3.3. Finishing the proof of Theorem 3.1. We can now show that if n = qN

(that is, we have N unknowns but want to use a fraction q of the usual requirement
of N equations), then we can recover an m-sparse solution with high probability if N

is large enough.

Proof of Theorem 3.1: Fix a subset T ⇢ {1, 2, . . . , N} with |T | = m and let
x 2 X

T

, x 6= 0. Applying Lemma 3.5 to the vector u = x/kxk2 with � replaced by
�/3 shows that

(1� �/3)kxk2  k�xk2  (1 + �/3)kxk2 (3.24)

holds with probability greater than 1�Q(�/12)p(n, �/6), that is, fails with probability
less than Q(�/12)p(n, �/6), assuming now that n � 12/�. If we square each entry in
(3.25) and note that 1� �  (1� �/3)2 and (1+ �/3)2  1+ � for � 2 (0, 1) we obtain

(1� �)kxk22  k�xk22  (1 + �)kxk22, (3.25)
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again, with probability greater than 1�Q(�/12)p(n, �/6).
Now consider the set of all subsets T 2 {1, 2, . . . , N} with |T | = m; there are�

N

m

�
such subsets. If we let E

T

denote the event that equation (3.25) fails to hold
on X

T

then P (E
T

)  Q(�/12)p(n, �/6) as remarked above. We again employ Boole’s
inequality (3.18) to conclude that the probability P0 of equation (3.25) failing on at
least one of the sets T is bounded as follows:

P0 
✓

N

m

◆
Q(�/12)p(n, �/6) 

✓
36eN

m�

◆
m

r
n

⇡

e

�n(�2
/144��

3
/1296)

, (3.26)

where we used the classic bound
�
N

m

�


�
eN

m

�
m (see Exercise 22). Finally, let’s fix

n = qN for some q 2 (0, 1). In this case the right side of (3.26) yields

P0  N

m+1/2

✓
36e

m�

◆
m

r
q

⇡

e

�qN(�2
/144��

3
/1296)

. (3.27)

For any fixed choice of � 2 (0, 1), q 2 (0, 1), and m � 1 the right side of (3.27)
goes to 0 as N !1, which shows that the probability of (3.25) failing can be made
arbitrarily small by taking N su�ciently large. In fact, if we choose ✏ 2 (0, 1) and take
the log of both sides of the inequality N

m+1/2
�

36e

m�

�
m

p
q

⇡

e

�qN(�2
/144��

3
/1296)  ✏, we

obtain the inequality (3.1). ⇤

Exercise 22. Show that
�
N

m

�


�
eN

m

�
m. Suggestion: observe that

�
N

m

�
 N

m

m!

and log(m!) =
P

m

x=1 log x �
R

m

1 log xdx.

4. Finding Sparse Solutions with `

1 Minimization. We now turn to a more
quantitative analysis of why `

1 minimization successfully recovers sparse signals. Let’s
start with the simple case of a nonzero 1-sparse vector x⇤ that satisfies �x⇤ = b, where
� is an n⇥N matrix that satisfies the RIP of order 3 with constant �. If it turns out
that x⇤ is the unique solution to the optimization problem

min kxk1 subject to �x = b, (4.1)

then we have a reasonable way of recovering x⇤ from the measurement vector b, for
(4.1) can be cast as a standard linear programming problem [16].

The key again lies in considering the properties of the null space N (�), because
all solutions to �x = b have the form x⇤ + ⌘ for some ⌘ 2 N (�). If for each nonzero
⌘ 2 N (�) the function q

⌘

(t) = kx⇤+ t⌘k1 has a unique global minimum at t = 0, then
x⇤ will be the unique solution of (4.1). To see this, suppose �x⇤⇤ = b with x⇤⇤ 6= x⇤.
Let ⌘ = x⇤⇤ � x⇤ 6= 0 and note ⌘ 2 N (�). Then kx⇤⇤k1 = q

⌘

(1) > q

⌘

(0) = kx⇤k1.
Let us thus examine conditions under which q

⌘

(t) = kx⇤ + t⌘k1 is guaranteed to
have a unique global minimum at t = 0. Fix any nonzero ⌘ = (⌘1, . . . , ⌘N

) 2 N (�).
Without loss of generality, assume that x⇤ = (x⇤1, 0, . . . , 0). If ⌘1 = 0, then q

⌘

(t) =
|x⇤1| + |t|

P
N

j=2 |⌘j

| is clearly minimized globally at t = 0. Now suppose ⌘1 6= 0, in
which case we must examine the function q

⌘

(t) = |x⇤1 + t⌘1| + |t|
P

N

j=2 |⌘j

|, whose
graph will look like that shown in Figure 4.1.

There are 2 critical points where a global minimum can occur: t = 0 and t =
�x

⇤
1/⌘1. We require q

⌘

(0) < q(�x

⇤
1/⌘1), which can be rewritten

|⌘1| <

NX

j=2

|⌘
j

|. (4.2)
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t = 0 t = −x∗

1/η1

Fig. 4.1. Graph of function q⌘(t) = |x⇤1 + t⌘1| + |t|
PN

j=2 |⌘j | for the case ⌘1 6= 0.

We’ll show that if the RIP of order 3 holds for � with �3 su�ciently small, inequality
(4.2) must hold for any ⌘ 2 N (�). We’ll also finally make use of the upper bound
part of the RIP. The argument that follows is a distillation of that in [18].

For a fixed ⌘ 2 N (�) define the set T1 to consist of the indices of the two
components largest in magnitude from the set {⌘2, . . . , ⌘N

}, define T2 to consist of
the indices of the next two largest components, and so on through T

s

which will
contain indices of the smallest one or two elements (depending on whether N is even
or odd). Let T = {1} [ T1 and T

c be its complement, [s

j=2Tj

. Let ⌘

Tj 2 RN be the
vector ⌘ but with all components set to zero except those corresponding to indices
in T

j

. Observe that 0 = �⌘ = �⌘

T

+ �⌘

T

c , so �⌘

T

= ��⌘

T

c . Also, ⌘

T

is 3-sparse.
Since � satisfies the RIP of order 3 for some constant � (and so also of order 2 by
Exercise 12), we have

|⌘1|  k⌘T

k2 (since k⌘
T

k22 = |⌘1|2 + k⌘
T1k22)

 1p
1� �

k�⌘

T

k2 (using RIP of order 3, left side of (2.4))

=
1p

1� �

k�⌘

T

ck2 (since k�⌘

T

k2 = k�⌘

T

ck2)

 1p
1� �

sX

j=2

k�⌘

Tjk2 (by the triangle inequality)


p

1 + �p
1� �

sX

j=2

k⌘
Tjk2 (using RIP of order 2, right side of (2.4)) (4.3)

If i 2 T

j+1 and T

j

= {k1, k2}, then |⌘
i

|  |⌘
k1 | and |⌘

i

|  |⌘
k2 |, and so |⌘

i

| 
1
2 (|⌘

k1 |+ |⌘
k2 |) = 1

2k⌘Tjk1. We use this to bound the `

2 norm of ⌘

Tj+1 by the `

1 norm
of ⌘

Tj ,

k⌘
Tj+1k2 =

q
⌘

2
i1

+ ⌘

2
i2


r
1
4
k⌘

Tjk21 +
1
4
k⌘

Tjk21 =
1p
2
k⌘

Tjk1. (4.4)

Combining (4.3) and (4.4) yields

|⌘1| 
p

1 + �p
1� �

sX

j=2

k⌘
Tjk2 

p
1 + �p

2(1� �)

s�1X

j=1

k⌘
Tjk1 

p
1 + �p

2(1� �)

NX

j=2

|⌘
j

|, (4.5)

which gives us (4.2) if we have
p

1+�p
2(1��)

< 1, that is, � <

1
3 . Therefore `

1 minimization

is guaranteed to exactly recover 1-sparse solutions if � satisfies the RIP of order 3
with constant �3 < 1/3.
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The following theorem generalizes this result [18]:

Theorem 4.1. Let � be an n⇥N matrix that satisfies the RIP of order 3k with

constant �3k

<

1
3 . Then solving the `

1
minimization problem (4.1) exactly recovers

k-sparse signals.

Indeed, this result can be proved with a straightforward extension of the argument
above, based on considering the function q

⌘

(t) = kx⇤ + t⌘k1 where x⇤ is a k-sparse
solution to �x⇤ = b, and defining the sets T

j

to consist of 2k-tuples of indices.
Theorems 3.1 and 4.1 are not sharp—the method works in many cases that don’t

satisfy the conditions in these theorems. For example, in a simulation using k = 3,
q = 0.25, ✏ = 0.05, and N = 100 we successfully recovered 3-sparse solutions in 1000
of 1000 trials with random normal matrices �, while Theorem 3.1 suggests we need
N � 8.78 ⇥ 105. A practical rule of thumb is that n � 4k, that is, q � 0.25, is
often su�cient for `

1 minimization to recover a k-sparse signal [12], and much e↵ort
has been directed at obtaining sharper theoretical results. For readers interested in
numerically exploring some examples, [10] provides helpful Matlab code. See [25] for
background on linear programming and [16] for development of basis pursuit as a
means of e�cient `

1 minimization.

An estimate similar to that of Lemma 3.2 can be derived in the case that the
entries of � are ±1 signed Bernoulli variables, and so results analogous to Theorems
3.1 and 4.1 also hold; see [1]. We should point out, however, that for 0� 1 Bernoulli
matrices like those used in the coin problem the RIP estimates are not quite as good,
as shown in [15] and discussed in [6].

Exercise 23. Why didn’t we assume � satisfies the RIP of order 2 in the simple
1-sparse solution scenario above? Redo the analysis under the assumption of the RIP
of order 2, with |T

j

| = 1, and show that it requires � > 1.

5. Beyond Sparse Signal Recovery. Actual signals are rarely sparse, as we’ve
been assuming. As a generalization we say that x is “k-compressible” if x has k com-
ponents that are “much larger” in magnitude than the remaining N � k components.
This might be the case in the coin problem if most of the coins are “acceptable,” say
lie within a small error tolerance ±0.001 grams, but there are a few really o↵-mass
coins that di↵er significantly from nominal. Many signals arising in applications are
compressible in this sense, for example, photos taken by a digital camera. The CS al-
gorithm recovers such signals almost as well as simply keeping the largest components–
but without doing the extensive sensing that would be necessary to identify all of the
components in order to determine which are the largest [18].

The CS algorithm can also be adapted to work for noisy signals, in which case
the `

1 minimization problem becomes

min kxk1 subject to k�x� bk2  ✏,

where ✏ bounds the amount of noise. This still produces good estimates in a compu-
tationally e�cient manner and the problem remains stable, in that small errors in b
have relatively little e↵ect on the solutions produced by our algorithm [14].

The applications of CS are continually expanding, including medical imaging,
communications, analog-to-information conversion, geophysical data analysis, com-
pressive radar, and genetic screening, among others. For example, CS can greatly
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reduce scan times and potentially increase resolution of magnetic resonance imaging
[30]. CS microarrays combine group testing and CS principles to accurately identify
genetic sequences, e.g, to detect pathogens in a water sample [19]. CS has also been
used to image the rupture process of a main shock in an earthquake [35]. Many other
applications are being developed (see http://dsp.rice.edu/cs). All in all, CS is proving
to be a powerful and flexible paradigm and will continue to be an exciting field of
mathematical research that extends into many other disciplines.
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