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Abstract

We review time-frequency methods that can be useful in quantifying circadian and ultradian patterns in behavioral
records. These records typically exhibit details that may not be captured through commonly used measures such as
activity onset and so may require alternative approaches. For instance, activity may involve multiple bouts that vary in
duration and magnitude within a day, or may exhibit day-to-day changes in period and in ultradian activity patterns.
The discrete Fourier transform and other types of periodograms can estimate the period of a circadian rhythm, but we
show that they can fail to correctly assess ultradian periods. In addition, such methods cannot detect changes in the
period over time. Time-frequency methods that can localize frequency estimates in time are more appropriate for
analysis of ultradian periods and of fluctuations in the period. The continuous wavelet transform offers a method for

determining instantaneous frequency with good resolution in both time and frequency, capable of detecting
changes in circadian period over the course of several days and in ultradian period within a given day. The discrete
wavelet transform decomposes a time series into components associated with distinct frequency bands, thereby
facilitating the removal of noise and trend or the isolation of a particular frequency band of interest. To demonstrate
the wavelet-based analysis, we apply the transforms to a numerically-generated example and also to a variety of
hamster behavioral records. When used appropriately, wavelet transforms can reveal patterns that are not easily
extracted using other methods of analysis in common use, but they must be applied and interpreted with care.
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Introduction

Behavioral rhythms of animals span a wide range of cycle
lengths, including circannual rhythms that vary with the
seasons (period of 1 year), changes in activity due to the
estrous cycle in rodents (cycle length of 4-5 days), circa-
dian rhythms that track the daily light-dark cycle (period
of 1 day), and ultradian rhythms of activity occurring
within a single day (typically periods of 8 h or less).

The mammalian circadian pacemaker, the suprachias-
matic nucleus (SCN), governs circadian rhythms of tissues
throughout the body as well as of outputs like activity,
coordinating physiological processes internally and with
the external environment by entraining to light-dark (LD)
cycles [1]. Locomotor activity offers a convenient and
non-intrusive way to measure the circadian rhythms of
an animal, for example, by measuring wheel-running or
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by using a motion sensor. Behavioral rhythms can exhibit
a circadian period (reflecting the circadian clock in the
SCN) as well as ultradian periods. The ultradian rhythms
emerge as a consequence of multiple physiological pro-
cesses, not currently well understood, and tend to have
greater interindividual variability than circadian rhythms
[2]. In addition, the waveform of activity is known to vary
under different conditions. For example, the waveform of
animals entrained to an LD cycle often depends on the
photoperiod, while hamsters under constant light (LL) can
“split” their behavior and under 24 h LDLD cycles can
“bifurcate” their activity rhythms [3]. These changes in
waveform and the presence of ultradian rhythms point to
the fact that behavioral records display a rich variety of
patterns that we would like to be able to characterize and
quantify.

The variability and noisiness of behavioral records cre-
ates a challenge in reliably determining period and phase
of activity rhythms, and even more so in finding ways to
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quantify other aspects of behavioral patterns. In partic-
ular, behavioral records are typically nonstationary; their
frequency content is not constant over time. A variety of
methods have been applied to detect circadian rhythmic-
ity and to measure the period of circadian rhythms for
different types of molecular and behavioral data, including
autocorrelation, Fourier and other periodograms, sine-
fitting, cosinor analysis, maximum entropy spectral anal-
ysis (MESA), digital filtering, and wavelet-based methods
[4-11]. Assessing characteristics of ultradian rhythms is
particularly challenging, with few methods available. For
instance, one study applied a continuous wavelet trans-
form to identify how cage size affected ultradian rhythms
in mice [12]. Similarly, a wavelet scalogram can be used
to detect circadian and ultradian patterns in arterial pres-
sure [13]. More recently, digital filtering, autocorrelation,
and MESA have been used to analyze ultradian rhythms
in the sleep-wake behavior of rats [14], and gender differ-
ences in circadian and ultradian behavioral rhythms have
been explored with the use of cosinor analysis [15,16].
Other types of methods have also been applied to examine
patterns in activity, including detrended fluctuation anal-
ysis to reveal a scale-invariance across the spectrum from
seconds to 24 h [17].

In the following section, we briefly describe sev-
eral methods of time-frequency analysis, specifically the
Fourier periodogram and discrete and continuous wavelet
transforms, and apply them to a numerically-generated
time series with known circadian and ultradian peri-
ods to illustrate their use. In the Examples and Discus-
sion section, we apply the wavelet transforms to activity
records from hamsters to demonstrate their efficacy on
real data. We conclude with some final remarks, empha-
sizing a few caveats regarding the effective application of
wavelet transforms.

Fourier and wavelet time-frequency analysis
methods

We expect that behavioral patterns will differ between the
day and the night, at the very least in magnitude but also
possibly in ultradian period. For instance, activity bouts
may be briefer and occur more (or less) often during sub-
jective day than during subjective night for a nocturnal
rodent. How can we identify these sorts of patterns in an
activity rhythm?

Periodograms
The natural place to start when carrying out a mathe-
matical analysis of frequency is a Fourier periodogram.
For a record with many cycles, a periodogram can yield
good estimates of the dominant frequencies occurring in
a stationary time series.

Let a time series be generated by sampling a process
every At hours, with x; the measurement taken after
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kAt hours have elapsed (e.g., if activity is binned every
6 minutes, then At = 0.1 h). If N such samples are
taken, this uniform sampling results in the finite sequence

{x0,%1,...,4v_1}. The discrete Fourier transform (DFT)
{X0,%1,...,&%n—1} of this time series is defined by
N-1
&k — Z xne—ankn/N’ (1)
n=0
where i +/—1. The Fourier periodogram shown in

Figure 1 for a numerically-generated time series displays
the power spectral density &,% /N corresponding to period
NAt/k hours.

To understand what ultradian frequencies the DFT is
able to detect, let’s examine Equation (1) in the context of
a circadian rhythm. Suppose the time series has a period
of T hours (with possibly some ultradian periods as well),
SO X;; = Xy mod s for all #, where there are s = t/At time
points per day. Also assume that the times series covers
D periods, so N = Ds. Then we can break up the DFT
sum into portions covering each of the D days, on each of
which the time series {xy, . .., xs_1} repeats itself:

D—1s-1

xk — Z Zx e—2mk(n+ds)/N

=0 n=0

s—1 _
— ane—Znikrz/N Z e—ZJ'rikd/D'
n=0 d=0

We can apply the geometric sum formula, Zg g =
ll__rf for r # 1, with r = e=27/D | Jeading to
s— —2mikD/D
; 1—e
A —2mikn/N
T = ane 1 — o—27ik/D
_Zx o~ 2mikn/N 1-1
1— e—ZJTLk/D

=0

if k is not a multiple of D (noting =27 = 1 for all
integers m). Therefore the DFT coefficients x; are only
nonzero when k = mD for some positive integer m, which
correspond to periods ¥ kAt = - hours. That is, only har-
monics of t (the period of the daily rhythm) can appear
in the DFT, and so the true ultradian periods will not
be revealed by the periodogram. This fact is reflected in
Figure 1B, which shows DFT spikes at harmonics of 24 h,
but no spikes at the actual ultradian period values. Also
note that a square wave with period 24 h will have spikes at
all harmonics of 24 h (12 h, 8 h, 6 h, etc), even though that
signal involves no ultradian periods. Therefore the pres-
ence of spikes in the DFT at harmonics does not directly
indicate whether or not ultradian periods are present.
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Figure 1 Periodogram analysis of a time series. (A) Simulated time series with 16 hours of period 5.3 h alternating with 8 hours of period 1.62 h,
plus white noise. (B) Fourier, MESA, and Lomb-Scargle periodograms all have similar large spikes at harmonics 24/4=6 h and 24/5=4.8 h, plus small
spikes at harmonics 24/7=3.43 h, 24/8=3 h, and 24/9=2.67 h. Note the absence in all 3 periodograms of significant power at the ultradian periods 5.3
hand 1.62 h, marked by small arrows along the horizontal axis. (C) Inverse DFT of the first 18 harmonics. While the periodograms do not provide a
direct means of detecting the ultradian periods of interest, if the underlying ultradian pattern is sufficiently regular (as is the case in this example),
then taking the inverse DFT of the circadian harmonics can reveal what that pattern is.

Note that the periodogram applied to real data will
display some frequencies other than the harmonics of
7 because real activity records are noisy and vary from
day to day, so they don’t perfectly repeat a pattern every
cycle. However, if the interest lies in extracting patterns
that do essentially repeat daily, this analysis implies that
the Fourier periodogram will not be useful in measuring
the true period(s) of ultradian activity patterns (even if
an ultradian period coincides with a harmonic, we have
no way of easily distinguishing whether or not a large
spike at a harmonic indicates a true ultradian period).
Other periodograms present a similar difficulty for mea-
suring ultradian periods, as illustrated in Figure 1B. In
general, methods like the DFT are not well-suited for
nonstationary time series.

The DFT has an advantage over other periodogram
methods in that it can be inverted. If the circadian pat-
tern of activity is sufficiently regular, like in the simulated
time series in Figure 1, then we can keep the dominant
harmonics (with periods 7/m) from the DFT and invert
to see what this pattern is, as shown in Figure 1C. In
practice, this approach works best for animals with very
predictable timing of activity bouts; the discrete wavelet

transform described below offers a more flexible tool for
this purpose.

It is important to keep in mind that the purpose of
periodograms like those shown in Figure 1B is to deter-
mine frequencies present globally in the signal, so they do
not provide the proper tool for the problem of determin-
ing ultradian frequencies present during particular time
intervals, particularly if the period can differ during, say,
subjective day and night for an animal, or for detecting
changes in the circadian period from day to day. A method
that can localize in time is more appropriate for these
tasks, which involve nonstationary time series. The clas-
sic example of such time-frequency analysis is the wavelet
transform, which comes in two flavors, discrete and con-
tinuous. The continuous wavelet transform provides a
replacement for the periodograms, by offering high res-
olution period information that is localized in time. The
discrete wavelet transform provides an alternative method
to inverting the DFT for identifying the daily pattern of
activity bouts, with the flexibility that it does not require
bouts be similarly timed each day.

We should note that, while wavelet transforms can pro-
vide excellent resolution of how the frequency or period
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changes over time, all time-frequency analysis must obey
the limitations imposed by the Heisenberg uncertainty
principle, which in essence says that increasing the time
resolution will decrease the frequency resolution, and vice
versa. Just as we cannot simultaneously know the exact
position and momentum of a quantum particle, in the sig-
nal processing context we cannot simultaneously pinpoint
time and frequency. The choice of wavelet determines
how sensitive the corresponding wavelet transform can
be to frequency as opposed to time specificity, but there
is no way to obtain perfect resolution in both time and
frequency.

The continuous wavelet transform

Continuous wavelet transforms convolve a time series x(¢)
with a wavelet function v (¢), essentially finding the corre-
lation between the time series at different points in time
with scaled versions of the wavelet function to determine
the frequency that best describes the times series at each
point in time. See [18] for an introduction to wavelet anal-
ysis. Continuous wavelet transforms can use real-valued
wavelet functions, like the Mexican Hat wavelet used in
[11] to analyze body temperature rhythms, or they can be
complex-valued, like the Morlet wavelet used in [13] to
analyze bioluminescence rhythms for molecular data (e.g.,
PER2:LUC oscillations). Complex-valued wavelet trans-
forms yield both amplitude and phase information over
time, while real-valued wavelets can be better at isolating
peaks and discontinuities [18]. Choice of which wavelet
function to use also depends on the desired resolution in
time versus frequency, and on the characteristics of the
time series, e.g., smooth and sinusoidal or choppy and
discontinuous. A wavelet function whose shape reflects
the features of the data often works best. Experimentation
with different choices can indicate which wavelet is best
suited for a particular set of data.

Here we focus on a complex-valued wavelet function
that is analytic (meaning the Fourier transform equals
zero for negative frequencies) called the Morse wavelet
function [19], so the resulting wavelet transform

Wi (t,5) = /Oo %w* (” - t) x(u0)du )

—00

is referred to as an analytic wavelet transform (AWT).
(The asterisk indicates the complex conjugate, and we
have used bandpass normalization to define the trans-
form.) The time ¢ refers to the current time point of
interest in the time series x(¢), and the scale s corre-
sponds to the period 2ms/wy, where wy is the mean
frequency of the Morse wavelet function ¥ (¢). The
heat map of the magnitude |Wy (¢,s)| yields informa-
tion about the frequencies present in the time series at
each point in time and the amplitude associated with
those frequencies. The wavelet ridges run along the local
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maxima s = Syax(f) of |[Wy (¢ 5)|, indicating the scale
Smax(t) that yields the greatest correlation with the time
series at time ¢ and thereby estimates the instantaneous
period 275,45 (£) /wy . The value of | Wy, (£, $,4x(t))| equals
the amplitude of the rhythm at time ¢ associated with
the instantaneous period, while the complex argument
(polar angle) of Wy (£, Smax(t)) indicates the phase at
time ¢ Consistent with normal usage in mathematics,
we define the amplitude of an oscillation to equal the
distance between the midpoint value and the maximum
value. For example, A is the amplitude of the sinusoidal
function A cos(wt) + C. Doubling the amplitude gives the
peak-to-trough height of the oscillation.

As an illustrative example, examine the AWT in Figure 2
of the simulated time series from Figure 1A. For a finite
length, discrete time series {xg, %1, . . ., xn—1}, we use a dis-
cretized version of (2), as explained in [18]. Observe that
the period in the AWT heat map is not scaled linearly
along the vertical axis, since the transform is calculated
with respect to scale s, the reciprocal of period, but here
we have converted to period for ease of interpretation.
For this example, the AWT closely estimates the periods
5.3 h and 1.6 h of the alternating ultradian rhythms, and
also correctly estimates their amplitude. The AWT can tell
us both what periods are present in the times series and
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Figure 2 AWT of the simulated activity time series. The heat map
in (B) indicates the absolute value of the AWT coefficients for the
simulated time series, shown again in (A) for ease of comparison. The
short black curves in (B) are the wavelet ridges that provide an
estimate of the instantaneous period, averaging 52 hand 1.6 h
during the alternating intervals (close to the true values 5.3 h and 1.62
h). The amplitude is indicated by the color of the heat map. The
amplitude of the time series alternates between 0.5 and 0.2, so the

AWT also correctly estimates the amplitude during each time interval.
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Figure 3 DWT of the simulated activity time series shown in
Figure 1A, using the symlet6 filter. The wavelet details Dy through
Dy are shown at the same scale as the time series itself so that the
magnitudes can be directly compared.

when they occur (within the constraints of the uncertainty
principle).

The AWT must be interpreted with care. If the activity
of an animal is too variable, the AWT may not yield any-
thing usable. It suffers problems with harmonics, which
appear as “echoes” in the heat map below the hot spots
marking dominant frequencies. Wavelet transforms, like
other filtering techniques applied to finite length time
series, exhibit edge effects due to the wrap-around nature
of the filtering process. Edge effects can be minimized for
activity data by starting and ending the time series to be
transformed at midpoints of rest intervals. See [9,18] for
further discussion of edge effects.

The discrete wavelet transform

The discrete wavelet transform (DWT) is rather differ-
ent in nature from the continuous version. In place of a
wavelet function, a high-pass wavelet filter and a low-pass
scaling filter are repeatedly applied to yield a set of wavelet
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details Dy, ..., Dy (as well as wavelet smooths, which we
won't discuss). The sum of the wavelet details plus the
final smooth equals the original time series, so the DWT
decomposes the time series into components associated
with certain period ranges. More specifically, each wavelet
detail D; is associated with a frequency band corre-
sponding to periods approximately 2/ At through 21 At
(as before, we sample every At hours to generate the time
series), assuming we use certain families of filters like the
Daubechies filters. For instance, if the time series is an
activity record with 6 minutes bins (At = 0.1 h), then
Ds covers roughly the period range 3.2-6.4 h. The value
of At controls the range of periods associated with each
wavelet detail, so we can adjust that range through the bin
size. If the circadian component is desired, then choos-
ing At = 0.25 h (15 minute bins) works well so that
Dg corresponds to the period range 16-32 h. If a partic-
ular ultradian rhythm is sought, then it can be helpful to
choose a bin size so that the period range of one of the
details is centered on the desired period.

For this application, we chose a translation-invariant
DWT with the Daubechies least asymmetric filter of
length 12, sometimes called symlet6. Shorter length filters
result in more overlap between the frequency bands asso-
ciated with each wavelet detail, so that the components
are not as well separated with respect to the period ranges.
Longer length filters can worsen edge effects. See [20] for
an in-depth explanation of the translation-invariant DW'T
(also known as a maximal overlap DWT), and see [9,21]
for practical overviews.

Again consider the simulated time series in Figure 1A to
illustrate possible uses of the DWT for analysis of activ-
ity records. Figure 3 shows the wavelet details obtained
from the DWT of the simulated time series, for which
At = 0.1 h. Wavelet detail D5 (period range 3.2-6.4 h)
reflects the large activity bouts with ultradian period 5.3
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Time of day (in hours)

DWT interval analysis.

0 3 6 91215182124 3 6 9 12151821 24

Figure 4 Bout interval analysis using the DWT. (A) The first 2 days of the original simulated time series from Figure 1A is shown above the
cleaned-up version, which equals the sum of the wavelet details D3-D7 from Figure 3. Peaks of the summed wavelet details (marked by diamonds)
correspond to midpoints of the simulated activity bouts. (B) Length of time intervals between midpoints of activity bouts, measured as the distance
between peaks of the summed wavelet details. The three large bouts of activity are separated by roughly 5.3 h (perturbed by the added noise), the
four shorter bouts of activity are separated by around 1.6 h, and the transition intervals are around 3.5h. These values are correctly identified by the
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Figure 5 Example of the AWT applied to detect changes in
period and amplitude over time. (A) Time series of wheel running
(counts per 6 minute bin) for a female hamster in constant darkness.
(B) Heat map of the magnitude of the AWT coefficients. The black
curve is the wavelet ridge that indicates the instantaneous period,
while the color of the heat map indicates amplitude. (C) Curves
showing the amplitude (in blue) and period (in black), extracted from
the wavelet ridge in (B), revealing that the oscillation of the amplitude
is nearly antiphase to the oscillation of the period in this example.
Hamster record courtesy of Eric Bittman and Emily Manoogian.
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h, while D3 — D4 (period ranges 0.8-1.6 h and 1.6-3.2 h,
respectively) best reflect the ultradian rhythm with period
1.6 h. To capture the overall pattern occurring in the
time series, we sum D3 — D7 together (roughly covering
period range 1-26 h), shown underneath the time series in
Figure 4A. This offers a more flexible version of the DFT
method shown in Figure 1C, as DWT approach continues
to yield good results even if the timing of the bouts varies
from day to day. To measure the ultradian periods present
during each part of the day, we can examine the time
intervals between peaks of the summed wavelet details
(which roughly correspond to midpoints of activity bouts).
These intervals are plotted in Figure 4B, demonstrat-
ing that this approach can capture the ultradian periods
present during different parts of the day.

The DWT is also effective at detecting sharp discontinu-
ities in a time series (with an appropriate choice of filter),
such as occur with activity onsets. See [11] for a descrip-
tion and examples of how the DW'T can be used to detect
onsets in activity records, which is not discussed in this
review.

Computations

The freely available MATLAB wavelet toolbox jlab [22]
was used to compute the AWT (using 8 = 3 and y =
8 in the Morse wavelet function), and the freely avail-
able MATLAB wavelet toolbox wmtsa [23] (companion
software for [20]) was used to compute the translation-
invariant DWT (which refers to symlet6 as lal2). All
calculations for both the simulated time series in the
Methods section and for the real data sets described in
the Results section were run in MATLAB 8.0.0.783 (The
MathWorks, Natick, MA).
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Figure 6 Example of the AWT applied to detect an ultradian period of activity. (A) Actogram displaying wheel running (6 minute bins) for a
male hamster entrained to 14L:10D. (B) Heat map of the magnitude of the AWT coefficients. The wavelet ridge (the black curve) indicates the
instantaneous period, while the color of the heat map indicates amplitude. While in the light, the hamster is not active so the AWT heat map shows
dark blue, while in darkness the hamster typically displays an ultradian period around 4.5-5 h (indicated by the wavelet ridges in black on the hot
spots). On day 3, two large bouts of activity are closely spaced, resulting in a lower ultradian period and a strong 12 h harmonic. The wavelet ridge at
period 24 h indicates that the animal is successfully entrained to the 24 h LD cycle. The yellow spots around period 2 h are for the most part
harmonics of the hotspots above them. Hamster record courtesy of Eric Bittman and Emily Manoogian.
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Animal care

Regarding the activity records of Syrian hamsters from
Eric Bittman’s lab: All procedures were approved by the
animal care and use committee (IACUC) of the Univer-
sity of Massachusetts at Amherst, and conform to all USA
federal animal welfare requirements.

Regarding the activity records of Syrian hamsters from
Brian Prendergast’s lab: All procedures conformed to the
USDA Guidelines for the Care and Use of Laboratory
Animals and were approved by the Institutional Animal
Care and Use Committee (IACUC) of the University of
Chicago.

Examples and discussion
To demonstrate that the AWT and DW'T can be effective
in analyzing real behavioral data, we apply the methods
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described in the previous section to a variety of hamster
activity records. We also discuss some of the difficulties
that can be encountered when applying these transforms
for real data.

Tracking changes in activity over the estrous cycle

The estrous cycle in hamsters typically results in an
approximately 4-day pattern in the amplitude and period
of activity (“scalloping”), due in part to the effects of estra-
diol [24]. The AWT can be effective in tracking these
changes in amplitude and period over time, if the record is
sufficiently long. The difficulty is that edge effects can dis-
tort the AWT heat map, so that 1-2 days at the beginning
and end are not reliable. If a 4-day pattern is being sought,
then the activity record should cover at least 2 uninter-
rupted weeks, preferably more, for the AWT to yield good
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than 0.5 h. Hamster records courtesy of Brian Prendergast.
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Figure 7 Actograms displaying motion (6 minute bins) from 3 male hamsters entrained to 15L:9D, with averaged AWT heat maps and
graphs of DWT-derived intervals between midpoints of activity. The AWT heat maps show the mean of the absolute value of the AWT
coefficients, taken across 11 days. (A) The activity of this hamster exhibits a very short period near lights on and off and a longer ultradian period
during the middle of the night. This pattern is reflected in both the AWT and the DWT-derived interval analysis. During the day, the bouts appear
more randomly spaced, with no clear frequency emerging in either the AWT heat map or the interval graph, a pattern which also appears in the
other two records. (B) This hamster appears to display two ultradian frequencies at night, a very short period of less than 0.5 h and a longer period
that starts around 2 h shortly after lights-off and decreases through the night, again reflected in both the AWT heat map and the DWT-derived
intervals analysis. (C) This hamster shows almost no activity in the first part of the night, after which it exhibits ultradian periods around 1 h and less
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results. A further disadvantage of the AWT is that missing
data in the record can also distort the results. Neverthe-
less, on uninterrupted records of sufficient length, the
AWT can provide a spectacular visualization of the effects
of the estrous cycle on activity. See Figure 5 for an exam-
ple. For other examples of using wavelet analysis to detect
period and amplitude changes across the estrous cycle,
see [9] (in mice) and [11] (in hamsters).

Ultradian periods during day and night
The wavelet-based analysis can also be effective at detect-
ing changes in ultradian period across the day. For exam-
ple, we can apply the AWT to a hamster wheel-running
record to detect a roughly 5 h ultradian period during the
night, as shown in Figure 6. Observe that the AWT heat
map only shows hot spots during the night and not dur-
ing the day, correctly reflecting that the activity is only
occurring when the lights are off. Note that the ridge
curves will not yield good estimates of the times of activ-
ity onset and offset, as the border between time intervals
of different frequencies (e.g., activity patterns during sub-
jective day versus subjective night) will appear smeared,
due to the limitations of time versus frequency resolution.
For wavelet-based determination of the precise time of
activity onset, use a method like that described in [11].
As another example, consider the three hamster records
shown in Figure 7. We apply both the AWT and DWT
methods to these records. To minimize the obscuring
effects of day-to-day variations, the AWT heat maps are
averaged over the 11 days of the record. Comparison of
the two methods is recommended, as agreement between
them increases confidence that the results are meaningful.
During the night when activity is much greater, the ultra-
dian patterns revealed by the wavelet-based techniques
are clear, though with some random variation in the actual
period. On the other hand, activity is sparse and spo-
radic when light is present, with the intervals varying from
0.5-3 h. Whether the lack of a clear ultradian period dur-
ing daytime is due to masking suppressing the animal’s
activity, is because the animal doesn’t express a coherent
ultradian rhythm during its rest phase, or is caused by
some other factor requires further investigation.

Final remarks

The AWT and DWT offer alternatives to try when other
techniques prove insufficient to analyze a time series in
the desired manner. We don’t suggest that wavelet trans-
forms be the first techniques to apply when studying a
new set of behavioral records, as well-established meth-
ods are in many cases sufficient to answer the questions
of interest. Wavelet-based methods must be applied and
interpreted with care, keeping in mind issues with har-
monics and edge effects. In particular, the record must be
sufficiently long so that a day or so can be discarded on
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each end of the resulting wavelet transform since these
portions may be distorted by edge effects. If a time series
is excessively noisy, has too much missing data, or the
rhythms are not focused on particular frequencies, the
wavelet transforms may not yield anything useful. How-
ever, when used appropriately on relevant datasets, the
AWT and DWT can reveal patterns that are not easily
extracted using other methods of analysis in common use,
thereby expanding the types of questions we can ask a set
of behavioral records to answer. The methods presented
here offer a means of identifying circadian and ultradian
patterns and how they change over time, from day-to-day
as well as over the course of a day.
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