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Abstract  

Determining phase markers and period length (τ) from experimental data sets is an 

essential task for most everyone engaged in biological rhythms research.  A variety of 

methods have been developed, such as sinusoid fitting and the Fourier periodogram, 

which assume a fixed period and amplitude. Most biological oscillations exhibit fluctuations 

in both period and amplitude, leading to the recent interest in the application of wavelet 

transforms that can measure how rhythms vary over time. In this short article, we examine 

how wavelet-based analysis methods can be extended to detect activity onsets as well as 

onsets in the temperature rhythms of rodents. 
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Determining free-running rhythm period length (τ) from experimental data sets is an 

essential task for most everyone engaged in biological rhythm research.  Traditionally, this 

has been done using methods that rely on sinusoidal waveforms of fixed frequencies and 

assume rhythms of constant period and amplitude over time (e.g., the Fourier 

periodogram).  Recently, wavelet transforms − a powerful type of time-frequency analysis 

that can measure how frequencies vary over time in a time series − have been employed 

as effective tools for analyzing circadian rhythmicity, especially as applied to oscillating 

bioluminescent cells.  Wavelet analyses have been valuable for studying variability in 

period and amplitude, characterizing rhythmicity at different time scales (Chan et al, 2000), 

and removing trend and noise (for review and references, including the underlying 

mathematics, see Leise and Harrington, 2011). 

 

Here we show how we have used wavelets to measure the phase and period of behavioral 

rhythms.  For over 85 years (Johnson, 1926), such rhythms usually have been graphed 

and analyzed as actograms, in which activity (e.g., wheel running) over 24 or 48 h is 

plotted horizontally and succeeding days are stacked vertically.  Historically, τ in behaving 

rodents typically has been determined on the actograms by eye-fitting regression lines 

through successive daily activity onsets, because "...the onset of activity...in the great 

majority of records is a more precise 'marker' of the rhythm than the end of activity...." 

(Pittendrigh and Daan, 1976); thus, a vast literature has accumulated on τ's calculated 

using activity onset.  To our knowledge, wavelet transforms have not yet been used to 

track circadian activity onsets, and here we describe how we have applied wavelets to 

objectively identify this phase marker.  
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Using Discrete Wavelet Transforms for Activity Rhythms 

	
  

Given that activity onset on most actograms appears as a relatively sharp discontinuity, 

jumping from zero activity to a relatively high value, we used a maximal overlap discrete 

wavelet transform (DWT) with a Daubechies 4-tap orthogonal filter (shown in Fig. S1), 

which identifies discontinuities in the first derivative of a signal (Percival and Walden, 

2000).  The DWT decomposes the original time series into components called details 

associated with different scales representing particular frequency bands (period ranges); 

see the Supplementary Online Material or (Leise and Harrington, 2011).  We can use the 

scale representing a circadian range of periods to identify circadian rhythm phase markers.  

With activity data binned at 15-min intervals, the circadian range [16 - 32 h] is represented 

by scale 6 (the period range associated with each wavelet scale depends on the binning 

interval).   

 

We tried using this scale to determine both rhythm onset and peak; onset and peak 

phases determined in this way are plotted as green dots on the wheel-running actograms 

of a hamster (Fig. 1A) and a mouse (Fig. 1D) in constant darkness (DD).  Scale 6-

determined onset is obviously off; it is advanced by several hours from actual onset.  

Notably, unlike the true activity onset, the scale 6-determined onset phase moves in 

perfect lock-step with the scale 6-determined peak phase.  The two green dots move in 

parallel as their phase is influenced by the nighttime activity waveform; they advance or 

delay when activity bout duration shortens or lengthens, respectively.  This scale is better 
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suited for identifying peak activity, rather than onset of activity.  So we need a more 

localized scale to mark activity onset. 

 

Figs. 1B and 1E show the hamster and mouse activity data from Figs. 1A and 1D 

decomposed into DWT scales.  Each successive scale doubles the associated periods and 

reveals different features of the activity rhythm.  Here, for example, D1 represents 0.5 - 1.0 

h; D3, 2 - 4 h; D5, 8 - 16 h; D6, 16 - 32 h.  To choose which of these scales would be the 

most accurate for identifying activity onset, we constructed simulated data sets and tested 

the effects of noise, variable onset times, and gradual onsets.  By using simulations for 

which we knew the actual onset times, we could calculate the error for each scale under 

each condition (data not shown).  We concluded that D3 seems a good choice, as long as 

activity onset is reasonably sharp rather than gradual in character; the prediction of activity 

onset with this method is little affected by white noise.  Figs. 1C and 1F show the revised 

phases of activity onsets (D3; magenta) along with the phases of circadian peaks (D6; 

green, as in Figs. 1A and 1D) on the hamster and mouse actograms.  

 

Fig. 2 shows the course of D3-determined onset phases and D6-determined peak phases 

of another hamster's wheel-running activity in DD, as well as the circadian amplitude 

measured by the D6 peak.  Note how the phase of the D6-determined peak, but not that of 

the D3-determined onset, is affected by the waveform of nighttime activity.  Over the 80-

day record, τ's determined by D3 onset (which we will call τo) or by D6 peak (which we will 

call τp) are equivalent (23.94 or 23.93 h, respectively), but cycle-to-cycle variability is 3-fold 

greater for τp (S.D., 0.16 h for τo and 0.51 h for τp), because the phase of the peak is 
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influenced by the distribution and duration of wheel-running activity.  The non-equivalence 

of τo and τp becomes manifest with shorter duration activity records.  For the hamster in 

Fig. 2, the greatest difference in these two τ's for any 10-day interval is 0.15 h; only after 

60 days do they stabilize at their 80-day values.  

 

Importantly, D3-determined activity onsets appear to closely track dynamic changes in 

actual activity onsets, e.g., if the wheel-running rhythm is shifted by a phase advance of 

the light-dark (LD) cycle (Fig. 3A) or when a "scalloped" pattern of activity onsets occurs 

with female estrous cycles (Morin et al., 1977) (Fig. 3B).  In the latter case, D3 correctly 

identifies the advanced phase of activity onset on the days preceding day 1 of the estrous 

cycle (day of vaginal discharge) (Fig. 3C) as well as the 4-day period of the cycle (Fig. 3D). 

 

Lastly, we challenged our method to mark activity onsets of an activity rhythm that is less 

distinct than the wheel-running rhythm, sp., the general locomotor activity rhythm as 

measured by a passive infrared detector.  Here we found the limits of onset detection 

using the D3 scale (Fig. S2).  If the sensitivity of our procedure is set at a relatively low 

level (the same as that already used in Figs. 1, 2, and 3; for description of "sensitivity," see 

the Methods section), activity onset determination seems reasonably good for the hamster 

(Fig. S2A); but quite poor for the mouse, with some of the D3 onset phases coming too late 

on days when activity begins as a short duration and/or low amplitude burst (Fig. S2C).   

Adjusting the sensitivity to a relatively higher level (see the Methods section) yields 

remarkably good activity onsets for the mouse (Fig. S2D); but now hamster onsets are off, 

with some of the D3 onset phases coming too early on days when little bursts of activity 
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precede the main bout (Fig. S2B).  Thus, as a practical matter, for some rhythms in 

individual animals and particular species, attending to the effects of sensitivity thresholds 

will be important for properly interpreting wavelet data sets. 

 

Using Continuous Wavelet Transforms for Temperature Rhythms 

 

In addition to behavioral activity rhythms, body temperature rhythms can be longitudinally 

recorded using miniature implantable sensors; unlike activity rhythms, however, 

temperature rhythms do not include intervals with absent (zero) values or sharp 

discontinuities at onsets.  The more continuous nature of temperature rhythm data 

suggests the use of continuous wavelet transforms (CWT), which convolve the time series 

with scaled and translated wavelet functions in order to measure period and amplitude 

varying over time (Torrance and Compo, 1998).  For determining the circadian component 

of the signal, we used the complex-valued Morlet wavelet function, as used by others for 

rhythms of cellular bioluminescence (Price et al., 2008; Baggs et al., 2009; Etchegaray et 

al., 2010; Meeker et al., 2011).  The Morlet wavelet transform, however, failed to track 

rhythm onset (in the same way that the DWT D6 detail failed to track activity onset), so we 

applied the real-valued Ricker wavelet function (the normalized second derivative of the 

Gaussian function), also known as the Mexican Hat wavelet, which is narrower in time 

scale than the Morlet wavelet function and better at capturing finer structure in the time-

scale representation (see Fig. S3 for graphs of these wavelet functions).  Fig. 4A shows 

the circadian rhythm of body temperature of a hamster running in a wheel in DD ("data," as 

recorded by an intraperitoneal ibutton [Dallas Semiconductor DS1922, Maxim Integrated 

Products, Inc., Sunnyvale, CA]), along with the Morlet and Mexican Hat transforms of the 
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data.  In Fig. 4B, the temperature rhythm is plotted in actogram format with Mexican Hat-

determined onset phases and Morlet-determined peak phases denoted as magenta and 

green dots, respectively.  DWT did not consistently perform as well as the CWT on these 

temperature data; similar CWT results were obtained in ibutton-implanted mice (not 

shown).   

 

We calculated the phase relationship between the onsets of rhythmic temperature 

(Mexican Hat) and wheel running (D3) in a group of hamsters outfitted with ibuttons and 

running in wheels in DD.  We found that the temperature rhythm phase leads the wheel-

running rhythm by 94 + 15 min (mean + S.D., n = 10 hamsters, average of 50 successive 

onsets / animal).  DeCoursey et al. (1998) reported an average temperature phase lead of 

59 min (with a range from 31 to 105 min) in hamsters in a 14 h:10 h LD cycle; these 

authors used the intersection of the daily temperature rise with the mean temperature level 

as the phase marker for onset on their raw temperature data (which we expect would 

occur later than the phase marker we use).  

 

Discussion 

 

As recognized previously, the application of wavelets to the analysis of circadian time  

series is a notable advance; wavelet transforms do not depend solely on underlying fixed 

sines and cosines, nor do they demand invariance of period and amplitude over time.  The 

DWT can perform well at tasks like detecting abrupt changes and discarding noise, and 

therefore offers great potential for analysis of activity data.  The ability of time-frequency 

analysis like the CWT to quantify cycle-to-cycle changes in the circadian amplitude of 
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temperature rhythmicity is also an exciting prospect, given the emerging role of the 

temperature rhythm in coupling brain and body oscillators (Brown et al., 2002; Buhr et al., 

2010).  Here we present our application of discrete and continuous wavelet transforms for 

the analysis of conventional actograms, including the phase of activity onset, and we invite 

readers to consult the Methods section for instructions on how to use these procedures on 

their own data sets in their home laboratories.   

 

A key point is that the free-running circadian period derived from the Daubechies filter or 

the Morlet function may not be equal to the traditional τ derived from a regression line 

along activity onsets.  Of course, both are valid measures, but it is important to specify 

whether the period is τo (from the D3 or Mexican Hat phase of rhythm onset) or τp (from the 

D6 or Morlet phase of the circadian peak); the latter is influenced by the temporal 

architecture of the activity bout while the former is more localized in time.  While τo and τp 

provide similar values with extended data sets (e.g., 60 days), they differ when derived 

from shorter data sets typically used in circadian studies (e.g., 10 days).  Hence the 

number of days being analyzed and the stability of the phase marker should be considered 

when applying these analyses, especially the cycle-to-cycle variability that characterizes 

τp.   

 

An obvious and already known implication of our observations is that circadian activity 

rhythms include additional non-circadian time scales and that these scales (like the one 

underlying the abrupt timing of activity onset) likely reflect distinct neural substrates and 

mechanisms.  Wavelet-based methods have great potential for providing tools to analyze 
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patterns generated at these different scales.  In general, biological rhythms, whether 

arising from activity, temperature, or other processes, can yield very rich data sets whose 

characteristics have not yet been fully plumbed, requiring new approaches to extract 

underlying patterns.  This letter provides a step toward expanding our toolbox of analysis 

methods for circadian data.  We encourage further dialog and development of novel 

techniques, whether based on wavelets or other mathematical and statistical methods, to 

continue expanding the field’s toolbox. 

 

Methods 

 

Computations: Numerical calculations were run on MATLAB 2012a (MathWorks, Natick, 

MA).  Our customized MATLAB scripts are available at: 

http://www.cs.amherst.edu/~tleise/CircadianWaveletAnalysis.html 

We ask that readers please cite the present paper when using these methods for their own 

work. 

 

Discrete wavelet transform: For the DWT, our script calls on the WMTSA Wavelet Toolkit 

for MATLAB, developed by Charlie Cornish to accompany the book by Percival and 

Walden (2000).  This package is freely available at 

http://www.atmos.washington.edu/~wmtsa/.  The D3 wavelet detail coefficients may have 

multiple peaks each day, marking onsets of different bouts of consolidated activity over the 

course of 24 h.  Circadian rhythm activity onset should occur sometime between the 

middle of the circadian rest interval (nadir of the D6 wavelet detail coefficients) and the 

peak of the circadian activity interval (peak of the D6 detail coefficients), so we selected the 
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D3 peak that occurred between the D6 nadir and peak.  If more than one D3 peak occurred 

in such an interval, we selected the largest peak unless an earlier peak reached an 

amplitude of at least a certain percentage of the largest peak.  For the work reported here, 

we set this earlier peak percentage at either 60% (low sensitivity) or 37% (high sensitivity), 

i.e., the higher sensitivity recognizes an earlier smaller D3 peak as activity onset (note that 

commonly used methods also typically require adjustment of a parameter for optimal 

results).  To account for the phase shift caused by the wavelet filter, 1.25 h was added to 

the phase of the D3 peak to yield the phase of activity onset.  This offset was determined 

through testing on both simulated and real activity data. 

 

Continuous wavelet transform: For the CWT, our MATLAB script employs the wavelet 

software developed by Torrence and Compo (1998).  This package is freely available at 

http://paos.colorado.edu/research/wavelets/software.html.  For the Morlet-determined 

circadian peak phase, we ascertained the peak in the wavelet scalogram (which depicts 

the result of the CWT applied to the time series; the vertical axis represents frequency and 

the horizontal axis represents time; see Figure S4) for the period range 20 - 26 h, found 

the amplitude corresponding to the real part of the wavelet function, and obtained the 

phase at which the instantaneous amplitude of the oscillation reached maximum value.  

For the Mexican Hat-determined onset phase, we ascertained the peak in the wavelet 

scalogram for the entire period range at each instant of time and found the instantaneous 

predominant amplitude of the oscillation corresponding to this peak.  Since Mexican Hat 

wavelet is a real-valued function that captures positive and negative portions of zero-

centered oscillation as separate peaks, the phase at which the predominant component 

crossed zero was considered as rhythm onset.  



	
   12	
  

 

Acknowledgments 

 

The authors thank Ms. Krina Shah for conducting the experiment illustrated in Fig. 3B.  

This paper reports work supported in part by National Institute of General Medical 

Sciences (NIGMS) R01 GM094109 (to W.J.S.).  Its contents are solely the responsibility of 

the authors and do not necessarily represent the official views of the NIGMS. 

 

Conflict of Interest Statement 

 

The authors have no potential conflicts of interest with respect to the research, authorship, 

and/or publication of this letter. 

 

References 

 

Baggs JE, Price TS, DiTacchio L, Panda S, Fitzgerald GA, and Hogenesch JB (2009) 

Network features of the mammalian circadian clock. PLoS Biol 7:e52. 

 

Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, and Schibler U (2002) Rhythms of 

mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 12:1574-

1583. 

 

Buhr ED, Yoo S-H, and Takahashi JS (2010) Temperature as a universal resetting cue for 

mammalian circadian oscillators. Science 330:379-385. 



	
   13	
  

 

Chan FHY, Wu BM, Lam FK, Poon PWF, and Poon AMS (2000) Multiscale 

characterization of chronobiological signals based on the discrete wavelet transform.  IEEE 

Trans Biomed Eng 47:88-95. 

 

DeCoursey PJ, Pius S, Sandlin C, Wethey D, and Schull J (1998) Relationship of circadian 

temperature and activity rhythms in two rodent species. Physiol Behav 65:457-463.  

 

Etchegaray J-P, Yu EA, Indic P, Dallman R, and Weaver DR (2010) Casein kinase 1 delta 

(CK1δ) regulates period length of the mouse suprachiasmatic circadian clock in vitro. PLoS 

ONE 5:e10303.  

 

Johnson MS (1926) Activity and distribution of certain wild mice in relation to biotic 

communities. J Mammal 7:245-277. 

 

Leise TL and Harrington ME (2011) Wavelet-based time series analysis of circadian 

rhythms. J Biol Rhythms 26:454-463. 

 

Meeker K, Harang R, Webb AB, Welsh DK, Doyle FJ, Bonnet G, Herzog ED, and Petzold 

LR (2011) Wavelet measurement suggests cause of period instability in mammalian 

circadian neurons. J Biol Rhythms 26:353-362. 

 

Morin LP, Fitzgerald KM, and Zucker I (1977) Estradiol shortens the period of hamster 

circadian rhythms. Science 196:305-307. 



	
   14	
  

 

Percival DB and Walden AT (2000) Wavelet Methods for Time Series Analysis. New York: 

Cambridge University Press. 

 

Pittendrigh CS and Daan S (1976) A functional analysis of circadian pacemakers in 

nocturnal rodents. I. The stability and lability of spontaneous frequency. J Comp Physiol A 

106:223-252. 

 

Price TS, Baggs JE, Curtis AM, Fitzgerald GA, and Hogenesch JB (2008) WAVECLOCK: 

wavelet analysis of circadian oscillations. Bioinformatics 24:2794-2795. 

 

Torrence C and Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol 

Soc 69:61-78. 

 

Figure Legends 

 

Figure 1.  Examples of wheel-running actograms and DWT multiresolution analyses (MRA) 

displaying wavelet details (B, E) for a hamster (top) and mouse (bottom) in DD.  That is, 

the DWT decomposed the activity into components associated with different period 

ranges.  Within each MRA, each detail has mean zero and is plotted with the same axis 

scaling, so magnitudes can be directly compared.  D6-determined onset phases and peak 

phases are shown as green dots (A, D); D3-determined onset phases and D6-determined 

peak phases are shown as magenta and green dots, respectively (C, F). 
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Figure 2.  Example of a wheel-running actogram of a hamster in DD, with D3-determined 

onset phases and D6-determined peak phases shown as magenta and green dots, 

respectively; circadian amplitude is measured by the D6 peak. 

 

Figure 3.  Examples of D3-determined activity onsets for (A) a hamster subjected to a 6-h 

phase advance of a 14 h:10 h LD cycle on the day marked by the arrow, and (B) a female 

hamster in DD.  For the latter, in (C) activity onset (advances are down, delays are up) is 

plotted in relation to day 1 of the estrous cycle (day of vaginal discharge) (*), and in (D) the 

autocorrelation function (ACF) indicates peaks at lags of 4 days, indicating a 4-day 

periodicity; for a time series with duration of length N, the autocorrelation measure is valid 

for lags up to N/2.  

 

Figure 4.  In (A), Morlet and Mexican Hat wavelet transforms of the circadian body 

temperature rhythm ("data") are shown for an exemplary hamster in DD; in (B), the data 

are plotted as an actogram, with Mexican Hat-determined onset phases and Morlet-

determined peak phases shown as magenta and green dots, respectively. 

 

Supplementary Online Material contains Figures S1 through S4. 










