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Abstract

The label on a bottle of pills says “Take one half pill daily.” A natural way to
proceed is as follows: Every day, remove a pill from the bottle at random. If it is a
whole pill, break it in half, take one half, and return the other half to the bottle; if it
is a half pill, take it. We analyze the history of such a pill bottle.

1 Introduction

A few years ago our cat Natasha (see Figure 1) began losing weight. We took her to the vet,
who did some tests and determined that she had a thyroid condition. He gave us a bottle of
pills and told us to give her half a pill every day.

The next day we shook a pill out of the bottle, broke it in half, gave her half of the pill,
and put the other half back in the bottle. We repeated that procedure for several more days.
Eventually, a day came when the pill we shook out of the bottle was one of the half pills we
had put back in on one of the previous days. Of course, we just gave her the half pill that
day. We continued to follow this procedure until the bottle was empty, and then we started
on a new bottle.

The pills solved Natasha’s medical problem; she regained the weight she had lost, and
she’s doing fine now. But they created an interesting mathematical problem. The state of
the pill bottle on any day can be described by a pair of numbers (w, h), where w is the
number of whole pills in the bottle and h is the number of half pills. We will assume that

Figure 1: Natasha.
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Figure 2: A pill-bottle walk with n = 20.

every day a pill is removed from the bottle at random, with each pill being equally likely to
be chosen. When a whole pill is removed, it is cut in half and half of it is returned to the
bottle; when a half pill is removed, nothing is returned to the bottle. Thus, if the state of
the pill bottle on a particular day is (w, h), then with probability w/(w+h) the state on the
next day will be (w − 1, h + 1), and with probability h/(w + h) it will be (w, h − 1). This
means that the state of the pill bottle executes a random walk in the plane, starting at the
point (w, h) = (n, 0), where n is the initial number of pills in the bottle, and ending at (0, 0).
Since the bottle contains 2n doses of medicine, the walk takes 2n steps.

For example, Figure 2 shows a computer simulation of a pill-bottle walk starting with
n = 20 pills. On the first three days, whole pills are removed from the bottle, and the state
of the bottle goes from (20, 0) to (19, 1), (18, 2), and (17, 3). The next day, a half pill is
removed, and the state goes to (17, 2). And the walk continues for 36 more steps until it
ends at (0, 0).

Figure 3 shows simulated walks with n = 100, n = 1000, and n = 10000. It appears that
although the walks are random, the overall shapes of the walks are similar, with the shape
becoming smoother as n increases. Notice that the scales of the three walks in Figure 3 are
different; the first starts at (100, 0), the second at (1000, 0), and the third at (10000, 0). It
is only when they are drawn the same size that they look similar. This suggests that we
should rescale the walks to a uniform size, independent of n. We will therefore switch to a
new coordinate system. If we let x = w/n and y = h/n, then x represents the fraction of
the original n pills that are still whole, and y represents the fraction that have become half
pills. Notice that these fractions may add up to less than 1, since some fraction of the pills
may have been used up completely.

Using the coordinates (x, y) to represent the state of the pill bottle, we get a random
walk that starts at (1, 0), ends at (0, 0), and stays in the triangle x + y ≤ 1, x ≥ 0, y ≥ 0.
When the state is (x, y), it changes as follows:

• with probability
x

x+ y
, the state changes to

(
x− 1

n
, y +

1

n

)
;

• with probability
y

x+ y
, the state changes to

(
x, y − 1

n

)
.
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Figure 3: Walks with n = 100 (left), n = 1000 (center), and n = 10000 (right).

We will call such a walk an n-walk. Increasing n does not make the walk larger, but it makes
the steps smaller. Figure 3 suggests that as n increases, the walk approaches a smooth curve.
What is this curve?

The limit curve we seek is an example of a scaling limit of a discrete process. Perhaps
the best-known example of a scaling limit is Brownian motion, which can also be thought
of as the scaling limit of a random walk. For more on Brownian motion and scaling limits,
see [5].

We first give an intuitive argument that suggests a possible answer to our question. We
will find it helpful to introduce a third variable t, standing for time. We set t = 0 at the
beginning of the walk, and to keep the scales of the variables comparable we will assume
that t increases by 1/n for each step of the walk. Since the walk consists of 2n steps, this
means that t will run from 0 to 2. We think of the limit curve as being given by parametric
equations

x = fx(t), y = fy(t), 0 ≤ t ≤ 2,

or, in vector notation,

(x, y) = (fx(t), fy(t)) = f(t), 0 ≤ t ≤ 2.

When the state of an n-walk is (x, y), the displacement to the next state is either the
vector (−1/n, 1/n), with probability x/(x + y), or (0,−1/n), with probability y/(x + y).
Thus, the expected value of the displacement is

x

x+ y

(
− 1

n
,

1

n

)
+

y

x+ y

(
0,− 1

n

)
=

1

n

(
− x

x+ y
,
x− y
x+ y

)
.

Since t increases by 1/n during the step, this suggests that the parametric form of the limit
curve might be a solution to the system of differential equations

dx

dt
= − x

x+ y
,

dy

dt
=
x− y
x+ y

. (1)

To solve this system of equations, we first note that

dy

dx
=
dy/dt

dx/dt
= −x− y

x
= −1 +

y

x
.

We will let you check that the curve y = −x lnx satisfies this equation for 0 < x ≤ 1
and passes through the point (1, 0). The graph of this curve is shown in Figure 4, and
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Figure 4: The graph of y = −x lnx.

the similarity to the walks in Figure 3 is striking. Notice that although ln 0 is undefined,
limx→0+(x lnx) = 0. From now on we consider 0 ln 0 to be equal to 0, so that the curve
y = −x lnx includes the point (0, 0).

Substituting y = −x lnx in the first equation in (1), we get

dx

dt
= − x

x− x lnx
=

1

lnx− 1
.

Separation of variables gives

t =

∫
(lnx− 1) dx = x lnx− 2x+ C.

Since x = 1 when t = 0, we must have C = 2, and therefore

t = x lnx− 2x+ 2. (2)

Let g(x) = x lnx− 2x+ 2 for 0 ≤ x ≤ 1. (Notice that by our convention that 0 ln 0 = 0,
we have g(0) = 2.) Then g maps [0, 1] onto [0, 2] and is strictly decreasing, so it has an
inverse. We define fx to be the inverse of g, which is a strictly decreasing function mapping
[0, 2] to [0, 1]. Thus, if 0 ≤ t ≤ 2 and x = fx(t), then x and t satisfy equation (2).1

Using y = −x lnx, we can rewrite equation (2) as t = −y − 2x + 2, or equivalently
y = 2− 2x− t. We therefore define

fy(t) = 2− 2fx(t)− t. (3)

We leave it to you to verify that the equation

(x, y) = (fx(t), fy(t)) = f(t), 0 ≤ t ≤ 2 (4)

parametrizes the curve y = −x lnx shown in Figure 4, and it satisfies the differential equa-
tions (1) for 0 ≤ t < 2, where we interpret the derivatives at t = 0 as one-sided derivatives.
(At t = 2, we have x = y = 0, and therefore the right-hand sides of the equations in (1) are
undefined.) The graphs of fx and fy are shown in Figure 5.

1Using the Lambert W function W−1 (see [1]), we can express fx(t) explicitly by the equation

fx(t) =
t− 2

W−1((t− 2)/e2)
.

However, we will not have any use for this expression.
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Figure 5: The graphs of x = fx(t) (left) and y = fy(t) (right).

It turns out that an n-walk does, indeed, approach the curve (4) as n approaches∞, but
the sense in which this is true must be stated carefully. Our main theorem is the following.

Theorem 1. Suppose ε > 0. Let the points on an n-walk be p0 = (1, 0), p1, . . . , p2n = (0, 0),
and for 0 ≤ i ≤ 2n let ti = i/n. Then the probability that for every i, ‖pi − f(ti)‖ < ε
approaches 1 as n → ∞. In other words, the n-walk converges uniformly in probability to
the limit curve.

Two notable features of the limit curve are that the tangent line at (1, 0) has slope −1,
and the tangent line at the origin is vertical. The first feature makes intuitive sense: early in
the walk, almost all of the pills in the bottle are whole pills, so it is likely that several whole
pills will be removed before the first half pill is removed. For example, in the walk in Figure
2, three whole pills were removed before the first half pill was removed. When these initial
whole pills are removed, the walk will move along the line y = 1 − x, which is the tangent
line at (1, 0). The second feature seems more surprising: it appears that near the end of the
walk, almost all of the pills are half pills, and the walk ends by moving along the line x = 0
toward the origin. This suggests two questions.

Question 1. For a bottle of n pills, what is the expected number of whole pills that are
removed from the bottle before the first half pill is removed?

Question 2. For a bottle of n pills, what is the expected number of half pills that are
removed from the bottle after the last whole pill is removed?

Versions of Question 1 have appeared in the literature before (see, for example, [3, 4, 6, 8]).
In the case n = 365, it is equivalent to the following version of the birthday problem: If
people are chosen at random, one by one, what is the expected number of people with
distinct birthdays who will be chosen before the first person who has the same birthday as a
previously chosen person? We will give an elementary derivation of the answer to Question 1.
In our next theorem we express the answer in terms of the incomplete gamma function, which
is defined as follows:

Γ(a, x) =

∫ ∞
x

ta−1e−t dt.
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Theorem 2. For a bottle of n pills, the expected number of whole pills that are removed from
the bottle before the first half pill is removed is

en

nn−1Γ(n, n).

As n→∞, this expected value is asymptotic to√
πn

2
.

The answer to Question 2 was found by Richard Stong.

Theorem 3 (Stong). For a bottle of n pills, the expected number of half pills that are removed
from the bottle after the last whole pill is removed is the nth harmonic number,

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

For example, for a bottle of 100 pills, the expected number of whole pills before the first
half pill is

e100

10099
Γ(100, 100) ≈ 12.21,

and the asymptotic approximation in Theorem 2 is√
100π

2
≈ 12.53.

The expected number of half pills after the last whole pill is

H100 ≈ 5.19.

The rest of this paper is devoted to the proofs of Theorems 1–3. We prove Theorem 1 in
Section 3, and Theorems 2 and 3 in Section 4. We consider variations on these theorems in
Section 5.

2 Background for Proof of Theorem 1

In preparation for the proof of Theorem 1, we simplify the problem by eliminating one
variable. According to definition (3), fy(t) = 2− 2fx(t)− t, so

f(t) = (fx(t), 2− 2fx(t)− t) = fx(t)(1,−2) + (0, 2− t).

A similar equation holds for the points on any n-walk. Suppose that after i steps, the
n-walk is at the point pi = (xi, yi), and let ti = i/n. This means that there are wi = nxi
whole pills and hi = nyi half pills in the bottle. These pills are enough for 2wi + hi doses
of medicine. Since there were 2n doses in the bottle originally, and i of those doses have

6



been used up, there must be 2n− i doses left. Therefore 2wi + hi = 2n− i, or equivalently
hi = 2n− 2wi − i. Dividing through by n, we find that

yi = 2− 2xi − ti, (5)

and therefore
pi = (xi, 2− 2xi − ti) = xi(1,−2) + (0, 2− ti).

It follows that

‖pi − f(ti)‖ = ‖(xi − fx(ti))(1,−2)‖ = |xi − fx(ti)|
√

5.

Thus, to ensure that pi is close to f(ti), it will suffice to ensure that xi is close to fx(ti);
we can ignore the y-coordinates of pi and f(ti). In other words, to prove Theorem 1 it will
suffice to prove the following lemma.

Lemma 4. Suppose ε > 0. Let the x-coordinates of the points on an n-walk be x0 = 1,
x1, . . . , x2n = 0, and for 0 ≤ i ≤ 2n let ti = i/n. Then the probability that for every i,
|xi − fx(ti)| < ε approaches 1 as n→∞.

In fact, using equations (3) and (5) we can completely eliminate the variable y from the
problem. We can describe the x-coordinates of the points on an n-walk by saying that xi+1

is equal to either xi − 1/n or xi, with the first possibility occurring with probability

xi
xi + yi

=
xi

xi + 2− 2xi − ti
=

xi
2− xi − ti

. (6)

Similarly, if x = fx(t) and y = fy(t), then for 0 ≤ t < 2,

f ′x(t) =
dx

dt
= − x

x+ y
= − x

2− x− t
= − fx(t)

2− fx(t)− t
. (7)

Thus, we can work entirely with the points (ti, xi) and the curve x = fx(t), both of which
lie in the tx-plane.

The idea behind our proof of Lemma 4 is straightforward. Let m be a large positive
integer, and let n be an integer much larger than m. Now consider an n-walk, and break the
2n steps of the walk into m large blocks of steps. We view the n-walk in the tx-plane, ignoring
the y-coordinates. The individual steps of the n-walk are random and unpredictable, but
the net change in x that results from a large block of steps is more predictable: by the law
of large numbers, this net change is likely to be close to its expected value. It will follow
that if a block of steps starts at a point (t, x), then the net result of this block of steps is
likely to be a small displacement in the tx-plane whose slope is close to −x/(2−x− t). Since
x = fx(t) is a solution to the differential equation dx/dt = −x/(2− x− t), this means that
the steps of the n-walk should stay close to the graph of fx.

This proof sketch suggests that our proof will involve ideas related to Euler’s method.
Recall that Euler’s method is a numerical method for solving a differential equation of the
form f ′(t) = F (t, f(t)) for a ≤ t ≤ b, with an initial condition f(a) = x0. Here the function
F and the numbers a, b, and x0 are given, and we want to compute values of f . To apply
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Euler’s method, we choose a positive integer n and a positive step size h ≤ (b − a)/n, let
tj = a+ jh for 0 ≤ j ≤ n, and then define xj recursively by the equation

xj+1 = xj + hF (tj, xj), 0 ≤ j < n.

Thus, the displacement from (tj, xj) to (tj+1, xj+1) has slope F (tj, xj). If h is small and F
is sufficiently well behaved, then the points (tj, xj) will be close to the graph of f .

We will need to modify Euler’s method slightly, because according to our proof sketch
for Lemma 4, the slope of the displacement caused by a block of steps in the n-walk starting
at (t, x) is likely to be close to −x/(2− x− t), but not exactly equal to it. We will therefore
need a version of Euler’s method in which the slope of the displacement at step j is only
approximately equal to F (tj, xj).

To make this precise, suppose that a < b, g1 and g2 are functions from [a, b] to R, and
for all t ∈ [a, b], g1(t) < g2(t). Let

D = {(t, x) ∈ R2 : a ≤ t ≤ b and g1(t) ≤ x ≤ g2(t)}.

Now suppose that F : D → R and f : [a, b]→ R, and for all t ∈ [a, b], (t, f(t)) ∈ D and

f ′(t) = F (t, f(t)),

where we interpret f ′(t) as a one-sided derivative when t = a or t = b. Let x0 = f(a). We
want to use a version of Euler’s method to locate points (tj, xj) near the graph of f . As
before, we will use a positive step size h ≤ (b − a)/n, so for 0 ≤ j ≤ n we let tj = a + jh.
We will assume that for 0 ≤ j < n, the slope of the displacement from (tj, xj) to (tj+1, xj+1)
deviates from F (tj, xj) by some amount δj. Thus, we recursively define

xj+1 = xj + h(F (tj, xj) + δj).

To ensure that this formula is defined, we assume that for every j, g1(tj) ≤ xj ≤ g2(tj), so
that (tj, xj) ∈ D.

Lemma 5. In the modified Euler’s method described above, assume that for 0 ≤ j < n,

|δj| ≤ δ.

We also assume that ∂F/∂x and f ′′ are defined and bounded. Thus, we assume that there
are positive constants C1 and C2 such that for all (t, x) ∈ D,∣∣∣∣∂F∂x (t, x)

∣∣∣∣ ≤ C1, |f ′′(t)| ≤ C2.

Then for 0 ≤ j ≤ n,

|xj − f(tj)| ≤
(
hC2

2C1

+
δ

C1

)(
(1 + C1h)j − 1

)
. (8)
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Proof. We proceed by induction on j. Clearly inequality (8) holds when j = 0, since both
sides are 0. Now suppose the inequality holds for some j < n. By Taylor’s theorem, we can
write

f(tj+1) = f(tj) + hf ′(tj) +
h2

2
f ′′(cj)

for some number cj between tj and tj+1. And by the mean value theorem, we have

F (tj, xj) = F (tj, f(tj)) +
∂F

∂x
(tj, dj)(xj − f(tj)) = f ′(tj) +

∂F

∂x
(tj, dj)(xj − f(tj))

for some dj between xj and f(tj). Thus,

xj+1 − f(tj+1) = xj + h(F (tj, xj) + δj)− f(tj+1)

= xj + h

(
f ′(tj) +

∂F

∂x
(tj, dj)(xj − f(tj)) + δj

)
−
(
f(tj) + hf ′(tj) +

h2

2
f ′′(cj)

)
= (xj − f(tj))

(
1 + h

∂F

∂x
(tj, dj)

)
+ hδj −

h2

2
f ′′(cj).

Next we take absolute values and apply the bounds given in the statement of the lemma:

|xj+1 − f(tj+1)| ≤ |xj − f(tj)|(1 + C1h) + hδ +
C2h

2

2
.

Finally, we apply the inductive hypothesis to conclude that

|xj+1 − f(tj+1)| ≤
(
hC2

2C1

+
δ

C1

)(
(1 + C1h)j − 1

)
(1 + C1h) + hδ +

C2h
2

2

=

(
hC2

2C1

+
δ

C1

)(
(1 + C1h)j+1 − 1

)
,

as required.

3 Proof of Theorem 1

To complete the proof of Theorem 1, we return to our proof sketch for Lemma 4. Unfortu-
nately, nailing down the details of this proof sketch is not easy. Nevertheless, in this section
we show that, with some care, a proof based on these ideas can be carried out.

Fix ε > 0. We will refer to the region fx(t) − ε < x < fx(t) + ε in the tx-plane as the
ε-corridor. To prove Lemma 4, we must show that for large n, an n-walk is likely to stay
entirely inside the ε-corridor. We first determine simple bounds on any n-walk. At step i of
the walk, by (5) we have

xi ≥ 0, 2− 2xi − ti = yi ≥ 0,
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and therefore

0 ≤ xi ≤
2− ti

2
. (9)

Similar bounds apply to the graph of fx: for 0 ≤ t ≤ 2,

0 ≤ fx(t) ≤ 1, 2− 2fx(t)− t = fy(t) = −fx(t) ln(fx(t)) ≥ 0,

so

0 ≤ fx(t) ≤ 2− t
2

. (10)

These simple bounds already imply that the end of the n-walk stays inside the ε-corridor: if
ti > 2− 2ε, then

0 ≤ xi, fx(ti) ≤
2− ti

2
< ε,

and therefore
|xi − fx(ti)| < ε.

Thus, we only need to worry about ti in the interval [0, 2− 2ε]. In particular, if ε > 1, then
there is nothing more to prove, so we can assume now that ε ≤ 1. By stopping short of
t = 2, we avoid having to deal with the point (t, x, y) = (2, 0, 0) on the limit curve, where
the right-hand sides of the equations in (1) are undefined.

We will find it convenient to go a bit beyond t = 2− 2ε, so we define

D =

{
(t, x) ∈ R2 : 0 ≤ t ≤ 2− ε and 0 ≤ x ≤ 2− t

2

}
,

and for (t, x) ∈ D we let

F (t, x) = − x

2− x− t
.

Notice that for (t, x) ∈ D,

2− x− t ≥ 2− 2− t
2
− t =

2− t
2

> 0, (11)

so F (t, x) is defined.
By (9) and (10), any n-walk and the curve x = fx(t) both stay in the region D up to

time t = 2 − ε, and by (7), if 0 ≤ t ≤ 2 − ε then f ′x(t) = F (t, fx(t)). Thus, it makes sense
to apply Lemma 5 to the functions F and fx on the region D. In preparation for this, we
make some observations about these functions. We first note that by (11) and the definition
of D, for (t, x) ∈ D we have

2− x− t ≥ 2− t
2
≥ x ≥ 0.

Since F (t, x) = −x/(2− x− t), it follows that

−1 ≤ F (t, x) ≤ 0, (12)

and therefore
|f ′x(t)| = |F (t, fx(t))| ≤ 1. (13)
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Next we compute

∂F

∂x
(t, x) = − 2− t

(2− x− t)2
, f ′′x (t) =

fx(t)2

(2− fx(t)− t)3
=

(F (t, fx(t)))2

2− fx(t)− t
.

Thus, if (t, x) ∈ D, then by (11),∣∣∣∣∂F∂x (t, x)

∣∣∣∣ =
2− t

(2− x− t)2
≤ 2− t

((2− t)/2)2
=

4

2− t
≤ 4

ε
.

Similarly, if 0 ≤ t ≤ 2− ε, then

|f ′′x (t)| = (F (t, fx(t)))2

2− fx(t)− t
≤ 1

2− fx(t)− t
≤ 1

(2− t)/2
=

2

2− t
≤ 2

ε
.

We can therefore use C1 = 4/ε and C2 = 2/ε in Lemma 5. For reasons that will become
clear later, the value we will use for δ in Lemma 5 is

δ =
C1ε

6(e2C1 − 1)
. (14)

Since the function F (t, x) is uniformly continuous on D, we can choose some ζ > 0 such
that for any two points (t1, x1), (t2, x2) ∈ D,

if |t1 − t2| < ζ and |x1 − x2| < ζ then |F (t1, x1)− F (t2, x2)| <
δ

4
. (15)

We now choose a positive integer m large enough that

2

m
<
ε

3
,

2

m
< ζ,

e2C1 − 1

2m
<
ε

6
. (16)

Again, the reason for this choice will become clear later.
Consider an n-walk for any n ≥ m2. As in the statement of Lemma 4, let the x coordinates

of the points on the walk be x0 = 1, x1, . . . , x2n = 0, and for 0 ≤ i ≤ 2n let ti = i/n. We
now divide 2n by m, getting a quotient q and remainder r. In other words,

2n = mq + r

and 0 ≤ r < m. Notice that since n ≥ m2, we have q ≥ 2m. We think of the walk as
consisting of m blocks of steps, with each block containing q steps, followed by r extra steps
at the end. For 0 ≤ j ≤ m, let (Tj, Xj) be the position of the walk after j blocks of steps
have been traversed. Thus, Tj = tjq = jq/n and Xj = xjq.

Let h = q/n, so that for 0 ≤ j < m,

Tj+1 − Tj = h,

and note that since x either remains fixed or decreases by 1/n in each step of the walk,

0 ≤ Xj −Xj+1 ≤
q

n
= h.

11



Applying (16), we see that

h =
2q

2n
=

2q

mq + r
≤ 2q

mq
=

2

m
<
ε

3
,

so

|Tj+1 − Tj| ≤
2

m
<
ε

3
, |Xj+1 −Xj| ≤

2

m
<
ε

3
. (17)

In other words, in the course of a single block of steps, x and t change by less than ε/3.
For 0 ≤ j < m, let

δj =
Xj+1 −Xj

h
− F (Tj, Xj).

Rearranging this definition, this means that

Xj+1 = Xj + h(F (Tj, Xj) + δj).

Of course, this is the recurrence in our modified version of Euler’s method.
We would now like to apply Lemma 5, but we have no guarantee that δ will be a bound

on the numbers |δj|. However, we can show that if δ is such a bound, then the walk stays
in the ε-corridor:

Claim. Suppose that for all j < m, if Tj ≤ 2 − 2ε then |δj| ≤ δ. Then the n-walk stays
inside the ε-corridor.

Proof of Claim. Notice that since q ≥ 2m and 2/m < ε/3,

Tm = tmq =
mq

n
=

2mq

2n
=

2mq

mq + r
>

2mq

m(q + 1)
= 2− 2

q + 1
> 2− 2

2m
> 2− ε

6
> 2− 2ε.

Thus, we can let k be the least index such that Tk > 2− 2ε. Then for all j < k, Tj ≤ 2− 2ε,
and therefore, by assumption, |δj| ≤ δ. And since Tk−1 ≤ 2− 2ε, by (17) we have

Tk < Tk−1 +
ε

3
≤ 2− 2ε+

ε

3
< 2− ε.

We can therefore apply Lemma 5 to the points (Tj, Xj) for 0 ≤ j ≤ k and the functions F
and fx on the region D to conclude that for all such j,

|Xj − fx(Tj)| ≤
(
hC2

2C1

+
δ

C1

)(
(1 + C1h)j − 1

)
.

Since j ≤ k ≤ m and h ≤ 2/m,

(1 + C1h)j ≤
(

1 +
2C1

m

)m

< e2C1 ,

where the last inequality is well known (see, for example, inequality 4.5.13 in [7]). Therefore

|Xj − fx(Tj)| <
(

(2/m)(2/ε)

2(4/ε)
+

δ

C1

)
(e2C1 − 1) =

e2C1 − 1

2m
+
δ(e2C1 − 1)

C1

.
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By (16) and (14), the last two fractions are both at most ε/6. Thus, we have shown that

|Xj − fx(Tj)| <
ε

3
. (18)

This implies that all of the points (Tj, Xj) for 0 ≤ j ≤ k are in the ε-corridor.
Since Tk > 2−2ε, as we observed after (10), all points on the n-walk beyond (Tk, Xk) are

also in the ε-corridor. We still need to worry about points on the n-walk in the interiors of the
first k blocks. If (t, x) is such a point, then (t, x) occurs between (Tj, Xj) and (Tj+1, Xj+1),
for some j < k. To see that (t, x) is in the ε-corridor, we compute

|x− fx(t)| ≤ |x−Xj|+ |Xj − fx(Tj)|+ |fx(Tj)− fx(t)|.

We now bound each of the terms on the right-hand side. We already know, by (17) and (18),
that |x−Xj| ≤ |Xj+1−Xj| < ε/3 and |Xj − fx(Tj)| < ε/3. For the third term we apply the
mean value theorem:

fx(Tj)− fx(t) = f ′x(c)(Tj − t),
for some c between t and Tj. By (13) and (17), we conclude that

|fx(Tj)− fx(t)| = |f ′x(c)| · |Tj − t| ≤ |f ′x(c)| · |Tj+1 − Tj| < 1 · ε
3

=
ε

3
.

Putting it all together, we get

|x− fx(t)| ≤ |x−Xj|+ |Xj − fx(Tj)|+ |fx(Tj)− fx(t)| < ε

3
+
ε

3
+
ε

3
= ε,

so the point (t, x) is in the ε-corridor. We have now shown that all points on the walk are
in the ε-corridor, which completes the proof of the claim.

The claim shows that if an n-walk goes outside of the ε-corridor, then there must be some
j < m such that Tj ≤ 2− 2ε and |δj| > δ. To complete the proof, we will show that this is
unlikely to happen.

Partition {(t, x) ∈ D : t ≤ 2 − 2ε} into finitely many disjoint regions R1, R2, . . . , RK ,
each with diameter less than ζ. By (12) and (15), for each k with 1 ≤ k ≤ K we can choose
a number rk such that −1 ≤ rk ≤ 0 and for every (t, x) ∈ Rk,

|F (t, x)− rk| <
δ

4
. (19)

For example, we can take rk to be F (t, x) for some particular (t, x) ∈ Rk. Notice that the
regions Rk and numbers rk do not depend on n; as n→∞, Rk and rk will remain fixed.

We will write Prn(E) to denote the probability that an event E occurs when an n-walk
takes place. The claim implies that the probability that an n-walk will leave the ε-corridor
is at most

m−1∑
j=0

K∑
k=1

pj,k(n),

where
pj,k(n) = Prn((Tj, Xj) ∈ Rk and |δj| > δ).

13



Thus, it will suffice to show that for each j and k, limn→∞ pj,k(n) = 0.
Fix j and k with 0 ≤ j < m and 1 ≤ k ≤ K. The value of δj is determined by the block

of steps taken by the n-walk in going from (Tj, Xj) to (Tj+1, Xj+1). The points on this part
of the walk are (tjq+i, xjq+i) for 0 ≤ i ≤ q. We will refer to the step from (tjq+i, xjq+i) to
(tjq+i+1, xjq+i+1) as step i of this block of the n-walk. Notice that there are q steps in the
block, and since q is the quotient when n is divided by m and m is fixed, q → ∞ when
n→∞.

Let a be the number of steps in the block in which x decreases by 1/n. In the remaining
q − a steps the value of x does not change, so Xj −Xj+1 = a/n. Therefore, by definition,

δj =
Xj+1 −Xj

h
− F (Tj, Xj) = −a/n

q/n
− F (Tj, Xj) = −a

q
− F (Tj, Xj).

Although the value of pj,k(n) does not depend on the precise method by which the steps
in this block of the walk are chosen, it will be helpful to specify a method. We will assume
that for 0 ≤ i < q, random numbers si are chosen, independently and uniformly in [0, 1],
and then in step i, x decreases by 1/n if

si <
xjq+i

2− xjq+i − tjq+i

= −F (tjq+i, xjq+i),

and x is unchanged otherwise. Of course, according to equation (6), this procedure generates
the correct probabilities for the steps of the walk.

Suppose that (Tj, Xj) ∈ Rk. Then by (19), |F (Tj, Xj)− rk| < δ/4, or in other words

−rk −
δ

4
< −F (Tj, Xj) < −rk +

δ

4
. (20)

Also, for 0 ≤ i < q, by (17) and (16), |tjq+i − Tj| ≤ 2/m, |xjq+i − Xj| ≤ 2/m, 2/m < ε/3,
and 2/m < ζ. Since tjq+i ≤ Tj + 2/m < 2− 2ε+ ε/3 < 2− ε, we have (tjq+i, xjq+i) ∈ D, and
therefore, by (15), |F (tjq+i, xjq+i)−F (Tj, Xj)| < δ/4. Combining this with |F (Tj, Xj)−rk| <
δ/4, we conclude that |F (tjq+i, xjq+i)− rk| < δ/2, or in other words

−rk −
δ

2
< −F (tjq+i, xjq+i) < −rk +

δ

2
.

Recall that step i is determined by how si compares to −F (tjq+i, xjq+i). We can now
draw the conclusion that if (Tj, Xj) ∈ Rk, then:

(a) if si ≤ −rk −
δ

2
, then at step i, x decreases by

1

n
;

(b) if si ≥ −rk +
δ

2
, then at step i, x remains unchanged.

We are now ready to show that limn→∞ pj,k(n) = 0. By definition,

pj,k(n) = Prn((Tj, Xj) ∈ Rk and δj > δ) + Prn((Tj, Xj) ∈ Rk and δj < −δ).

We will show that both of the probabilities on the right-hand side approach 0 as n→∞.

14



For the first, suppose that (Tj, Xj) ∈ Rk and δj > δ. Since δj = −a/q − F (Tj, Xj), by
(20) this implies that

a

q
< −F (Tj, Xj)− δ < −rk −

3δ

4
.

Now let a′ be the number of values of i for which si ≤ −rk − δ/2. By conclusion (a) above,
a′ ≤ a, and therefore

0 ≤ a′

q
≤ a

q
< −rk −

3δ

4
< −rk −

δ

2
< 1.

This is very unlikely to happen. To see why, notice first that for 0 ≤ i < q, since si is
chosen uniformly in [0, 1] and 0 < −rk − δ/2 < 1, the probability that si ≤ −rk − δ/2 is
−rk − δ/2. And since the si are chosen independently, this means that a′/q, which is the
fraction of values of i for which si ≤ −rk−δ/2, should be close to −rk−δ/2. More precisely,
by the law of large numbers (see [2, Section VI.4, p. 152]), for any α > 0, the probability
that |a′/q − (−rk − δ/2)| > α must approach 0 as q → ∞. And since q → ∞ as n → ∞,
taking α = δ/4 we can conclude that

lim
n→∞

Prn

(
a′

q
< −rk −

3δ

4

)
= 0.

It follows that
lim
n→∞

Prn((Tj, Xj) ∈ Rk and δj > δ) = 0.

The second probability is similar. If (Tj, Xj) ∈ Rk and δj < −δ, then

a

q
> −F (Tj, Xj) + δ > −rk +

3δ

4
.

Now let a′ be the number of values of i for which si < −rk + δ/2. This time we use fact (b)
above to conclude that a′ ≥ a, so

1 ≥ a′

q
≥ a

q
> −rk +

3δ

4
> −rk +

δ

2
> 0.

Once again, the law of large numbers says that the probability of this event goes to 0 as
n→∞, which completes the proof of Lemma 4 and, therefore, Theorem 1.

4 Proofs of Theorems 2 and 3

To prove Theorem 2, fix n > 0, and let A denote the number of whole pills removed from
the bottle before the first half pill. Of course, the first pill removed from the bottle must be
a whole pill, and there are n whole pills altogether, so 1 ≤ A ≤ n.

For 1 ≤ k ≤ n, let Xk = 1 if the first k pills removed from the bottle are all whole pills,
and Xk = 0 otherwise. Then we have A = X1 +X2 + · · ·+Xn, and therefore

E(A) = E(X1 +X2 + · · ·+Xn) = E(X1) + E(X2) + · · ·+ E(Xn).
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The probability that the first pill removed is a whole pill is 1. Once the first whole pill
has been removed, the bottle contains n − 1 whole pills and 1 half pill, so the probability
that the second pill is also a whole pill is (n− 1)/n. Similarly, if the first two pills are whole
pills, then the probability that the third pill is a whole pill is (n− 2)/n. Continuing in this
way, we see that for 1 ≤ k ≤ n,

E(Xk) = Pr(Xk = 1)

= 1 · n− 1

n
· n− 2

n
· · · n− k + 1

n

=
n!

nk(n− k)!
.

Thus,

E(A) =
n∑

k=1

E(Xk) =
n∑

k=1

n!

nk(n− k)!
.

Reindexing by j = n− k, we get

E(A) =
n∑

k=1

n!

nk(n− k)!
=

n−1∑
j=0

n!

nn−jj!
=
n!

nn

n−1∑
j=0

nj

j!
. (21)

To relate this formula to the incomplete gamma function, we first evaluate the integral
in the definition of the incomplete gamma function. Applying integration by parts k times
leads to the formula in the following lemma.

Lemma 6. For every integer k ≥ 0,∫
tke−t dt = −k!

et

k∑
j=0

tj

j!
+ C.

Using this lemma, we find that

Γ(n, n) =

∫ ∞
n

tn−1e−t dt = lim
N→∞

[
−(n− 1)!

et

n−1∑
j=0

tj

j!

]N
n

=
(n− 1)!

en

n−1∑
j=0

nj

j!
. (22)

Thus,
n−1∑
j=0

nj

j!
=

en

(n− 1)!
Γ(n, n).

Substituting into (21), we get

E(A) =
n!

nn

n−1∑
j=0

nj

j!
=
n!

nn
· en

(n− 1)!
Γ(n, n) =

en

nn−1Γ(n, n).

This proves the first statement in Theorem 2.
To prove the second statement, about the asymptotic value as n → ∞, we need the

following fact.
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Lemma 7.

lim
n→∞

Γ(n, n)

(n− 1)!
=

1

2
.

Proof. According to inequality 8.10.13 of [7],

Γ(n, n)

(n− 1)!
<

1

2
<

Γ(n+ 1, n)

n!
. (23)

By Lemma 6 and equation (22),

Γ(n+ 1, n) =

∫ ∞
n

tne−t dt =
n!

en

n∑
j=0

nj

j!
= n

(n− 1)!

en

n−1∑
j=0

nj

j!
+
nn

en
= nΓ(n, n) +

nn

en
.

Substituting into the second half of inequality (23), we get

1

2
<

Γ(n, n)

(n− 1)!
+

nn

enn!
,

and therefore
1

2
− nn

√
2πn

enn!
· 1√

2πn
<

Γ(n, n)

(n− 1)!
<

1

2
.

By Stirling’s formula, limn→∞ n
n
√

2πn/(enn!) = 1, and the lemma now follows by the squeeze
theorem.

This lemma allows us to determine the asymptotic rate of growth of the expected value
of A. The expected length of the initial run of whole pills can be rewritten in the form

E(A) =
en

nn−1Γ(n, n) =
√

2πn · enn!

nn
√

2πn
· Γ(n, n)

(n− 1)!
∼
√

2πn · 1 · 1

2
=

√
πn

2
,

which completes the proof of Theorem 2.
Finally, we give Stong’s proof of Theorem 3. For 1 ≤ k ≤ n, consider the kth whole pill

that is removed from the bottle. This pill is cut in half, and half of it is returned to the
bottle; we will refer to this half pill as the kth half pill. Let Xk = 1 if the kth half pill is
removed from the bottle after the last whole pill is removed, and Xk = 0 otherwise. Then
the expected value we seek is

E(X1 +X2 + · · ·+Xn) = E(X1) + E(X2) + · · ·+ E(Xn).

After the kth half pill has been returned to the bottle, there are n− k whole pills still in
the bottle, and we have Xk = 1 if and only if among the set of pills consisting of these n− k
remaining whole pills and the kth half pill, the half pill is the last one to be removed from
the bottle. Since each pill in this set is equally likely to be chosen at each step, we have

E(Xk) = Prn(Xk = 1) =
1

n− k + 1
.

Therefore the expected number of half pills removed from the bottle after the last whole pill
is

E(X1) + E(X2) + · · ·+ E(Xn) =
1

n
+

1

n− 1
+ · · ·+ 1 = Hn.
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5 Variations

In all of our calculations, we have assumed that when a pill is removed from the bottle, all
pills in the bottle are equally likely to be chosen. But since the whole pills are twice as big
as the half pills, another natural assumption would be that whole pills are twice as likely to
be chosen as half pills. In this section we summarize the results of redoing our calculations
with this alternative assumption, leaving the details to the reader.

If whole pills are twice as likely to be chosen as half pills, then the differential equations (1)
must be replaced by

dx

dt
= − 2x

2x+ y
,

dy

dt
=

2x− y
2x+ y

.

The solution to this system of equations that passes through the point (1, 0) is

y = 2(
√
x− x), x =

(2− t)2

4
, y =

t(2− t)
2

.

Once again, the random walk converges uniformly in probability to this curve as n→∞.
Surprisingly, in this case the expected number of whole pills removed before the first half

pill turns out to be exactly the same as the expected number of half pills removed after the
last whole pill. Calculations similar to those in the last section show that both expected
values are

22n(
2n
n

) − 1.

There is a simple explanation for why these two expected values are equal. The expla-
nation is based on an alternative procedure we could follow to decide which pill to remove
from the bottle each day. First, number the pills in a full bottle from 1 to n. Then make
a deck of 2n cards numbered from 1 to n, with each number appearing on two cards, and
shuffle the deck. Every day, deal a card from the top of the deck, and if the card has the
number k on it, then remove pill number k from the bottle. As usual, if the pill is whole,
then cut it in half and return half to the bottle.

On any day, if pill number k is still whole, then there will be two cards numbered k in
the deck; if half of pill number k has already been taken, then there will be only one card
numbered k in the deck; and if pill number k has been used up completely, then there will
be no cards numbered k left in the deck. It follows that whole pills will be twice as likely to
be chosen as half pills, as required.

If we follow this procedure, then the number of whole pills removed from the bottle
before the first half pill is removed will be the same as the number of distinct cards dealt
from the top of the deck before the first duplicate card. Similarly, we could determine how
many half pills will be removed from the bottle after the last whole pill by dealing cards
from the bottom of the deck and counting the number of distinct cards dealt before the first
duplicate. It should now be clear by symmetry that the expected values of these two numbers
are equal. Indeed, the problem of computing this common expected value is equivalent to
the third question addressed in [9], and the answer follows from Theorem 5 of [9].
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