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Abstract: Researchers often model folded protein structures as graphs with amino acids as the vertices and edges representing
contacts between amino acids. The vertices in these graphs are naturally ordered in the amino acid sequence order. There are
many different graph construction methods and there is no consensus about what construction to use or what the major issues
are with each construction in the literature. We investigate different constructions and examine their effect on various graph
measures. We also consider the small-world network model for proteins, discuss its validity under the different constructions,
and discuss random protein graph generation. We propose a new graph property for graphs with ordered vertices, the contact
distribution, and propose a method of reciprocal attachment to merge neighborhoods for protein graphs.  2013 Wiley Periodicals,
Inc. Statistical Analysis and Data Mining, 2013
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1. INTRODUCTION

Understanding the mechanisms in protein folding and
predicting the three-dimensional structure of a protein are
challenging problems. Research groups use physical mod-
els, simulations, and templates (portions of known proteins
similar to the one under investigation) in procedures to get
the best realistic protein structure prediction that they can.
Other groups use known protein three-dimensional struc-
tures to try to shed light on the protein-folding problem.
There are many instances where the researchers model the
folded protein three-dimensional structures as a graph with
amino acids as the vertices and edges representing contacts
between nearby amino acids [1–4]. Many possible graph
constructions exist due to different representations of the
protein. There is no consensus about which construction to
use in the literature and little discussion as to what the dif-
ferences and consequences of each construction are. It is
also unclear whether current graph generators can generate
random graphs that behave similar to protein graphs. We
address these issues by comparing graph concepts across
various graph constructions based on protein structures and
graphs generated by random graph generators. We also
examine the distribution of long-range contacts in protein
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graphs compared to mechanisms for adding long-range con-
tacts in small-world graph generators, and explore whether
or not the probability models directing long-range contacts
in use are appropriate for protein graphs.

A graph is a collection of vertices and edges (V, E),
where an edge is a two-element subset of the set V indi-
cating a connection between those vertices. An edge may
be directed or undirected and may or may not have a
weight. The graphs we consider are undirected graphs. Most
of these graphs are simple, i.e., the graphs do not have
multi-edges (meaning there is either no edge or only one
edge between any two vertices), but one protein representa-
tion allows multi-edges in the corresponding graph. Protein
graph constructions do not have self-edges. Each amino
acid in the protein sequence is a vertex and edges reflect
that the amino acids are in contact in their three-dimensional
folded structure. To determine contacts, a pairwise distance
between amino acids is calculated, and if it is below a
threshold, the amino acids are in contact. We use Euclidean
distance between atoms while the protein is folded as our
distance to determine contacts, which is the most common
distance used based on our literature survey (results below).

Proteins are chains of amino acids that fold into a
specific shape to perform a job. Each amino acid has a
backbone, the same for all amino acids, except glycine,
and a side chain which differs between amino acids. In
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the backbone, there are two carbon atoms—commonly
called Carbon-Alpha (C-Alpha) and Carbon-Beta (C-Beta),
except glycine which has no C-Beta. These atoms are
convenient points of reference. When dealing with distances
on this atomic scale, the distance unit is the Angstrom
(Å). Additionally, because the amino acids are ordered, you
expect connections between amino acids near in sequence.
In some applications, these contacts are considered trivial,
and may be removed using a filter. For example, you may
not consider a contact to be a true contact unless the
amino acids are more than two apart in sequence. Finally,
protein structures in their folded state are determined using
chemical techniques by other researchers and the results are
entered into a freely available database (RCSB) [5]. For our
work, we use the protein databank (PDB) files associated
with our proteins downloaded from RCSB.

We offer a representative literature review of applications
where protein graphs with amino acids as the vertices
have been used. For each case, we note the application
and the graph construction used (or implied) including
what atoms were used as references to determine distances
(the protein representation), the distance cutoffs used, and
whether or not a filter was used to remove trivial contacts.
For notation, a C-Alpha protein representation refers to
only C-Alpha atoms being used to determine distances.
Other representations to determine distances are C-Beta
and all-atom (AA) representations. The literature review
is summarized in Table 1.

Protein graphs (contact maps) have been used since
the 1970s [6]. As seen in Table 1, they continue to be
used in current research. The most common representation
is C-Alpha. Distance cutoffs for determining contacts
typically range from 5–10 Å. Filters are not universally
used. In our examples, the filters occurred at different
sequence separations. For example, amino acids needed to
be more than two amino acids apart for contacts to count
in Krishnan’s work [3], but Gromiha focused on long-range
contacts more than 12 amino acids apart in sequence [8].
AA graphs allow multi-edges unless restricted. Finally, we

see from the applications that much of the related work
deals with protein folding, but there has been a recent shift
toward work with proteins as graphs.

As work has turned to understanding the protein graphs
as graphs, little attention has been paid to how the various
constructions affect values typically calculated for graphs.
Also, the question of whether or not small-world graph
generators can generate random graphs that mimic protein
graphs has not been addressed. In this work, we consider the
effects of these various constructions on graph properties
and implications for generating random graphs that behave
like protein graphs. First, we introduce relevant graph
definitions and a new graph property for protein graphs
in Section 2. Our methods for protein graph construction
and background on existing methods for random graph
generation are presented in Section 3. We introduce our
protein dataset in Section 4. In the first part of our results,
Section 5, we show the impact of the various construction
methods for protein graphs on small-world graph properties.
Then in the second part of our results, Section 6, we
demonstrate that current random graph generators (using a
rewired ring model as a small-world generator) do not yield
realistic protein-like graphs, and we propose a reciprocal
attachment method for a random protein graph generator.
Finally, we conclude with discussion and future work in
Section 7.

2. GRAPH CONCEPTS AND A PROPOSED
GRAPH PROPERTY

As seen in Section 1, some researchers have computed
graph concepts for protein graphs and evaluated their use
in understanding protein folding [1–4,10]. We define the
graph properties that we examine in this section. Note that
many graph concepts do not have adjusted computations for
graphs with multi-edges. As a result, our primary focus is
to compare the simple graph constructions. For notation,
the vertices of our graphs are the amino acids, labeled

Table 1. Example applications of protein graphs in the literature.

First author Year Rep. Dist. Filter Application Citation

Rodionov 1994 C-Beta — No Contact substitution [6]
Plaxco 1998 All-atom 6 Å No Folding rate prediction [7]
Gromiha 2001 C-Alpha 8 Å Yes Folding rate prediction [8]
Vendruscolo 2002 C-Alpha 8.5 Å No Small-world graphs [1]
Ivankov 2003 All-atom 6 Å No Folding rate prediction [9]
Greene 2003 All-atom 5 Å Yes Proteins as graphs [2]
Jung 2005 C-Alpha 8 Å No Unfolding rate prediction [10]
Krishnan 2008 C-Alpha 6 Å Yes Proteins as graphs [3]
Habibi 2010 C-Alpha 8 Å No Proteins as graphs [4]

Notes: Rep. = protein representation used, Dist. = Euclidean cutoff distance used. Filter simply refers to presence or absence of a filter.
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from 1 to n in sequential order, and there are a total of
m edges determined by contacts, where m and n depend
on the protein and construction methods used. A typical
representation of the graph is its adjacency matrix, A. The
matrix A is n by n and the ij th entry in the matrix is the
number of edges between vertex i and vertex j . Thus, all
entries in A will be 0 or 1 for simple graphs. For further
details or as an introduction to graphs, see Ref [11]. We
begin our definitions with the degree of a vertex, recalling
that we are dealing with undirected graphs.

2.1. Degree, Number of Edges/Contacts, and Degree
Distribution

For each vertex, the number of edges that connect to
that vertex is the degree of the vertex. In notation, this is
represented as qi, i = 1, . . . , n, and is easily computed from
the adjacency matrix as qi = ∑n

j=1 Aij . For protein graphs,
the degree is equal to the number of contacts determined
for each amino acid in the protein sequence.

One of the most important characteristics of a graph is its
degree distribution. We let pq be the fraction of vertices in
the graph with degree q. For simple graphs, the upper limit
on q is n − 1, and so we have the constraint

∑n−1
q=0 pq = 1.

It is not uncommon for the degree distribution to follow a
power law, such that pq = Cq−α , 2 < α < 3, where C is an
appropriate constant [11]. Finally, degree may be used as a
measure of centrality. A vertex is more central if it has more
connections. Not all neighbors are equivalent however, so
it is a good idea to consider alternative centrality measures
if centrality is of primary interest [11].

2.2. Graph Concepts and Small-World Properties

The average path length (APL) and the clustering coef-
ficient (CC) of a graph are common and easily computed
graph concepts. Shortest path length is the minimum num-
ber of edges that must be traversed to go between two
vertices. APL is the average of all the shortest path lengths
when considering all pairs of vertices [11]. In general, the
CC is a measure of how tightly clustered the graph is. There
are several nonequivalent definitions of the CC. By the first
definition, it is computed as six times the number of trian-
gles divided by the number of paths of length two in the
graph [11]. In other words, the CC is the number of trian-
gles out of the number of possible triangles starting from
two connected sides out of all triples of vertices. A second
definition of the CC allows us to possibly identify important
individual vertices because under this definition, the CC is
computed first for each vertex, and then averaged across all
vertices. For each vertex, v, the local CC is the number of
pairs of neighbors of v which are also connected divided by
the number of pairs of neighbors of v (i.e., it is analogous to

the first definition, but localized to each vertex), with ver-
tices ignored which have fewer than two neighbors. Then,
the average is taken over all vertices that have at least two
neighbors [11]. We obtain the average local CC over all
vertices with at least two neighbors and use it as the CC
for the graph. As we stated, these two definitions are not
equivalent, and we use the latter local approach.

Many social and biological networks are much more
highly clustered than random graphs with similar numbers
of vertices. Graphs with high CCs compared to random
graphs of the same size and fairly low values for APL
are often termed small-world graphs [12]. Researchers have
shown protein graphs exhibit small-world tendencies [1,2].
Small-world graphs and their properties have been studied
in a variety of applications [12–15].

2.3. New Graph Property: Contact Distribution

Contact distribution is a new graph property that we
propose for protein graphs due to the natural ordering of
vertices. We define it generally for simple graphs only
(not multi-edges) where the vertices are ordered. First,
we set edge weights for the graph to be equal to the
‘sequence’ separation of the connected vertices (i.e., amino
acids) [easily computed by subtracting their vertex numbers
(larger–smaller)]. Then the contact distribution is the dis-
tribution of the weights along the edges in the graph. For
protein graphs, it is the distribution of sequence separation
for amino acids in contact. Contact distribution allows us to
study how the edges are distributed across the possible ver-
tex separations based on the vertex ordering. Let ri be the
fraction of contacts or edges that occur at a sequence sepa-
ration of i (out of the n − i possible edges at that separation
distance). Each ri is between 0 and 1, and a simple rescal-
ing si = ri

(
n−i
m

)
allows for a constraint that

∑n−1
i=1 si = 1.

In this rescaling, si is the fraction of existing edges in the
graph that occur at sequence separation i, and our usual
choice for our plots of the contact distribution.

Briefly, we highlight the key difference between degree
distributions and contact distributions. For a degree distri-
bution, each vertex is assigned a degree, and we look at the
distribution of those values. For a contact distribution, each
edge, not vertex, is assigned a separation value, based on
the ordering of the vertices, and we look at the distribution
of the separation values. Degree distributions can be used
to generate random graphs with the same distribution [11].
A similar method should be possible for a contact distri-
bution (ignoring any other graph properties). For example,
if you need three edges with a separation of 12, then draw
three edges at random from the list of pairs of vertices with
separation 12, and add them to the graph, and repeat this
process for every separation distance. Additional challenges
presented in later sections mean this simple procedure will
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not help generate realistic protein graphs without other
considerations.

3. METHODS FOR PROTEIN GRAPH
CONSTRUCTION AND RANDOM GRAPH

GENERATION

3.1. Protein Graph Construction Methods

We examine several aspects of graph construction: the
protein representation (atoms used to determine distance),
the distance cutoff, and filters, which are used to eliminate
contacts.

3.1.1. Protein representation

We consider three different protein representations to
determine distances between amino acids in the three-
dimensional structure of the protein. The first is the
common C-Alpha to C-Alpha representation, where only
C-Alpha atoms are used. We refer to this representation as
CA (C-Alpha).

The second is an AA representation where all atoms,
except hydrogen, are considered. For any two amino acids,
all pairs of non-hydrogen atoms are examined and the min-
imum distance between the pairs is set as the distance
between the amino acids, which is used to determine if
edges are present. Thus, this graph only has single edges.
This representation is referred to as AA, or AA single con-
tact. Hydrogen are not considered because their positions
are often unresolved or are unclear in the three-dimensional
native structure determined by X-ray crystallography or
NMR (S. Jaswal, personal communication, 2011).

Finally, we use the same AA representation, but count
the number of pairs of non-hydrogen atoms whose distance
is less than our cutoff distance for each pair of amino acids.
In this final graph construction, multi-edges may result
between amino acids, so we refer to the representation as
MC (multiple contacts).

3.1.2. Distance

We examined distance cutoffs from 6 to 12 Å in steps
of 0.5 Å. We did in-depth examinations of graph concepts
at 6, 8, and 10 Å, though the patterns we found are similar
for each distance and we focus on 8 Å in the discussion.

3.1.3. Filter

Filters are designed to remove contacts from the graph.
Those contacts may be trivial or nontrivial. We already
do not allow self-edges, so the diagonal of the adjacency
matrix for each graph is set to 0. Filters remove subsequent

diagonals in the adjacency matrix, moving out from the
main diagonal. We set our filter to be indexed by a
parameter k. k = 1 means the main diagonal is removed,
so this is equivalent to the original adjacency matrix.
k = 2 means that the first diagonal and main diagonal
are removed, meaning that both have all values set to 0.
Higher values of k remove additional diagonals as well as
all previously removed diagonals.

We note an important cutoff for choices of k. Alpha-
helices (an important part of secondary structure in proteins)
have natural contacts at amino acids i and i + 4 all along
the helix. So at a filter value of k = 5 or higher, those nat-
ural contacts have been removed. We examined filters from
1 to 20 across our different distances and representations,
though at times we focus on filters of k = 1, 4, and 10.
We chose these main filters to compare the original graph
(k = 1), a graph with trivial contacts removed (k = 4) but
where alpha-helical contacts remain, and a graph where
only long-range contacts remained (k = 10). To give a bet-
ter picture of the changes due to filters we also have results
for k = 2, 6, and 8, in our results tables for APL and CC.

3.2. Methods for Random Graph Generation

The most basic random graph model is the Erdös-Rényi
random graph or ER model. The ER model can be described
in terms of n vertices and either having m edges or defining
p as the probability of an edge between any two vertices.
The ER model is often referred to as the Poisson model,
because in the limit of large n, the degree distribution
that results is Poisson [11]. Obviously, being restricted to
a Poisson degree distribution is a limitation, and other
random graphs have been developed that can model any
degree sequence, such as the configuration model [11].
These models however, do not have high CCs, which often
occur in real-world graphs. Specific small-world models
were developed to achieve the small-world properties.

Generating a small-world graph can be done in several
ways. In the proposal of Watts/Strogatz, small-world graphs
are generated by starting with a ring of vertices. The
vertices are all connected to some number of neighbors,
f , and each edge has the same fixed chance of being
rewired (probability w). Using this generation mechanism,
long-range connections are introduced, which decreases
the APL. However, the CC remains strong due to the
starting neighbor connections [12]. We refer to this graph
generating model as the rewired ring model. A variant of
the proposal keeps all the original connections and adds a
few random long-range ones with probability w.

Other models for generating small-world graphs exist.
Nguyen and Martel describe Kleinberg’s model [15] as
well as a generalization [13]. In Kleinberg’s model, a grid
is the basic starting unit for the graph. Each vertex is
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connected to its neighbors on the grid. Then, t long-range
connections are added based on a probability that is inverse
squarely proportional to the grid distance between each pair
of vertices [15]. Generalizations are made to models that
start with a grid and add t long-range edges under other
probability distributions (that can be vertex specific) [13].
Many other random graph models exist, including models
for directed graphs, growing graphs, and so on. For a broad
review of graph generators, see Ref [16].

4. PROTEIN DATA

Our data consist of 127 distinct proteins which were
collected to create a database of proteins with thermo-
dynamic and kinetic information available. The database
is currently maintained by Amherst College. Preliminary
database details are available in Ref [17]. For the analysis
in this article, the PDBs of the proteins were downloaded
from RCSB [5] and processed using a Perl script to obtain
the protein graphs under the methods described in the previ-
ous section. The graph concepts were then computed from
the protein graphs using R [18], the igraph package [19],
and original code, and compared to other variables in the
database. Reproducing the graph concept analysis on a
larger set of proteins sampled from RCSB is an area for
further investigation, but not all proteins have experimen-
tal thermodynamic and kinetic data available, which we
wanted to have for other analyses.

To get a sense of the data, we provide a few descriptive
statistics. For the 127 proteins, the average size is 107.5
amino acids, while the median size is 86 amino acids.
Twenty-eight proteins are multistate folders, and 65 are
two-state folders. We have folding rate constants for 115
proteins and unfolding rate constants for 49 proteins. The
average helical content of a protein in the dataset is 22.48%
(median 16%) and average beta-sheet content is 23.87%
(median 26%). Finally, we have all four structural classes
represented: 28 are class α, 36 are class α + β, 8 are class

α\β, 48 are class β, and 7 have unknown class (or are
fragments).

5. RESULTS COMPARING PROTEIN GRAPH
CONSTRUCTIONS ON SMALL-WORLD

CHARACTERISTICS

Several researchers have identified protein graphs as
small-world graphs [1,2]. We examine the effect of the
various graph constructions via the different protein rep-
resentations, distance cutoffs, and filters on the graphs in a
small-world context. We consider APL and the CC
individually, and then look at them together from the small-
world viewpoint.

5.1. Average Path Length

APL measures the number of edges that must be
traversed to move from one vertex to another. It is no
secret that the amino acids in proteins are packed together
very tightly and so we expect small APLs for the protein
graphs, especially at larger distance cutoffs. The results
of comparing APL across the various constructions are
intuitive for the different representations and filters. The
average APLs of protein graphs (and standard deviations
in parentheses) are shown in Table 2 and histograms of
the distributions at each representation and main filter
combination with distance fixed at 8 Å are shown in Fig. 1.

Our analysis shows that as expected, CA graphs have
longer APLs than AA graphs at the same filter and dis-
tances. Longer distances mean shorter APLs, and higher
filters mean longer APLs. Also, generally, the AA graph
with a k = 10 filter has a shorter APL than the CA graph
with no filter, k = 1. Our histograms (in Fig. 1) show the
distributions of APL at 8 Å, which we see are fairly con-
centrated at values between 2 and 4. At 10 Å, most of the
path lengths for AA or CA graphs are between 1 and 4, but
the CA APLs rise toward 6 when distance is set at 6 Å. Yet,

Table 2. Averages (with standard deviations in parentheses) of the average path lengths for our 127 proteins under different
representations, distances, and filters.

Rep. AA CA

Filter\Dist. 6 Å 8 Å 10 Å 6 Å 8 Å 10 Å

k = 1 2.81 (0.83) 2.20 (0.58) 1.91 (0.48) 5.38 (1.97) 3.42 (1.06) 2.54 (0.71)
k = 2 2.85 (0.83) 2.22 (0.57) 1.93 (0.47) 5.93 (2.15) 3.47 (1.06) 2.56 (0.71)
k = 4 3.06 (0.85) 2.31 (0.57) 1.98 (0.45) 5.64 (2.77) 4.06 (1.26) 2.70 (0.72)
k = 6 3.26 (0.95) 2.38 (0.57) 2.03 (0.45) 5.44 (2.61)* 4.18 (1.54)* 2.85 (0.74)
k = 8 3.35 (0.96)* 2.47 (0.59) 2.09 (0.45) 5.45 (2.79)* 4.18 (1.54)* 2.94 (0.79)
k = 10 3.42 (0.97)* 2.54 (0.59)* 2.13 (0.45) 5.43 (3.21)* 4.27 (1.57)* 3.01 (0.81)*

Notes: An * indicates several graphs were not connected at that filter/distance/representation combination so APL was not computed for
few graphs (max number of NAs = 3).
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Fig. 1 Histograms of average path length for the 127 proteins in our dataset at each representation and main filter level (k = 1, 4, or
10) with distance fixed at 8 Å.

even when we look at 6 Å for CA graphs, the longest path
lengths are between 10 and 15, and most are between four
and seven. Considering the size of some of these graphs,
that is impressive, it appears that we can transverse the
graph using very few vertices.

Briefly, we consider the relationship between APL and
graph size focusing on differences between AA and CA
representations at 8 Å. Figure 2 is a scatterplot showing
the relationship with no filter applied. APL does increase
slightly as graph size increases, as expected. For the AA
representation, applying a filter does not increase the APL
much. Comparing the main filters, at 8 Å, the average
increase at k = 4 is only 0.11 and at k = 10 this goes up
slightly to 0.34 from the k = 1 reference point, but is still
less than one additional edge, and is similar for the other
distances we examined. CA graphs have larger increases

in APL as filters are applied. In CA graphs, for the main
filters, at 8 Å, for k = 4, APLs are on average, 0.64 longer
than their k = 1 counterparts, and k = 10 APLs are 0.85
longer on average compared to k = 1. This is still less
than a one edge increase, on average. So while filters do
increase the path length, the biggest differences are due to
the representation. The average difference between AA and
CA APLs for k = 1 at 10 Å is 0.63, at 8 Å is 1.22, and
at 6 Å is 2.57. Thus, at higher distances, the representation
difference is not as pronounced.

5.2. Clustering Coefficient

Comparing the constructions in terms of their CCs is
also fairly intuitive. For the protein graphs, we display
the average CCs (and standard deviations in parentheses)

Statistical Analysis and Data Mining DOI:10.1002/sam
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Fig. 2 Graph size versus average path length of each protein in
the dataset at 8 Å with no filter k = 1. CA average path lengths
are blue squares, while AA average path lengths are red circles.
[Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

in Table 3 and histograms of the distributions at each
representation and main filter combination with distance
fixed at 8 Å shown in Fig. 3.

Applying a filter reduces the CC significantly. Our results
show that notably, even at the greatest distance we have of
10 Å, some of the proteins have a zero for their CC under a
CA construction. This occurs even more at 6 Å, eventually
reaching a point where some proteins have no vertices with
even two connected neighbors. CCs increase as distance
increases, and the representations do not result in terribly
different CCs if no filter is present (k = 1), though the AA
values are a little higher than the CA values. Once filters
are applied, AA graphs have much higher CCs than CA
graphs, and this is more pronounced at lower distances.

The significant drop in the CC when a filter is applied has
some implications for using the CC as a measure of how
tightly clustered protein graphs are, at least when filters are
applied. For long-range filters, say k = 8 or 10, if using the
CA representation, the CCs drop to near zero (as evidenced
in the histograms, even at 8 Å) and there is not much
variability in their values. Hence, it might be best to only
consider the CC without filters applied, or to develop a new
way to quantify long-range neighbor relationships.

Finally, we consider the relationship between graph
size and the CC. For the ER model, the CC is equal
to the probability of any two nodes being connected, or
equivalently, the average degree of the graph divided by the
graph size. Thus, for random graphs, a log–log plot of the
ratio of the CC to average degree versus graph size should
align along a straight line with slope equal to negative
one [20]. However, as in Ref [20] with a log–log plot, most
real networks have CCs that appear to be independent of
graph size. To examine the relationship between graph size
and the CC for our nonfiltered protein graphs, we make a
log–log plot similar to the one in Ref [20] for our protein
data (shown in Fig. 4) with distance set at 8 Å. For graph
sizes over 100, it appears that the CC is independent of the
graph size. For graph sizes smaller than 100, we see the
CC divided by average degree ratio increases as the graph
size decreases. This is not unexpected, as in proteins with
a small number of amino acids, the backbone connections
via sequence neighbors make up the bulk of the contacts
that are present, and these connections are often connected
triples and hence increase the CC. The average degree for
protein graphs with fewer than 100 amino acids is also less
than the average degree for graphs with greater than 100
amino acids (20.29 vs. 23.15 for AA method and 9.48 vs.
9.95 for CA method at 8 Å), which also contributes to an
increased ratio of CC to average degree. Hence, for large
proteins, we see the nonfiltered protein graph CCs appear
to be independent of protein size, but for small proteins, we
see some dependence on protein topology, particularly the

Table 3. Averages (with standard deviations in parentheses) of the clustering coefficients (CC) for our 127 proteins under different
representations, distances, and filters.

Rep. AA CA

Filter\Dist. 6 Å 8 Å 10 Å 6 Å 8 Å 10 Å

k = 1 0.57 (0.04) 0.63 (0.04) 0.68 (0.05) 0.53 (0.05) 0.59 (0.03) 0.62 (0.04)
k = 2 0.39 (0.04) 0.51 (0.04) 0.59 (0.04) 0.11 (0.07) 0.33 (0.04) 0.45 (0.04)
k = 4 0.21 (0.06) 0.36 (0.05) 0.47 (0.05) 0.03 (0.04) 0.11 (0.07) 0.27 (0.06)
k = 6 0.17 (0.05)* 0.30 (0.05) 0.39 (0.06) 0.01 (0.02)* 0.07 (0.05)* 0.20 (0.07)
k = 8 0.15 (0.05)* 0.25 (0.06) 0.34 (0.06) 0.01 (0.02)* 0.06 (0.05)* 0.17 (0.07)*
k = 10 0.13 (0.05)* 0.22 (0.07)* 0.29 (0.08) 0.01 (0.02)* 0.05 (0.04)* 0.15 (0.07)*

Notes: An * indicates several graphs had no vertices with a minimum of two connected neighbors at that filter/distance/representation
combination so CC was not computed for a few graphs (max number of NAs = 7).
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Fig. 3 Histograms of clustering coefficients for the 127 proteins in our dataset at each representation and main filter level (k = 1, 4, or
10) with distance fixed at 8 Å.

protein backbone that contributes many connected triples
of amino acids to the CC.

5.3. Small-World Properties—APL versus CC

Next we consider the interaction of APL and CC, in terms
of small-world graphs. Recall that small-world graphs have
high CCs and fairly low APLs. We found that the choice of
distance cutoff does not influence the overall pattern in our
results, so we fix it here at 8 Å. Figure 5 shows the average
CCs plotted against the APL for our data under both the
AA and CA representations and at the main filters of k = 1,
k = 4, and k = 10. Clearly, the nonfiltered graphs (k = 1; at
the far right in Fig. 5) are the ones that meet our criteria for
small-world graphs. Also, at each main filter level, the AA
construction appears to have lower APLs and slightly higher

CCs than the CA representation, which is expected because
the AA graph contains more edges with more contacts. At
k = 4 (triangles in Fig. 5), it is clear the CA graphs are no
longer small-world (their CCs are too low), but many of the
AA graphs still have APLs from two to four and CCs in the
range of 0.30–0.45, and this may still fit the small-world
criteria. These CC values for the AA graphs at k = 4 are a
little larger than we would expect for a random graphs of
these sizes, but not by very much, because the mean degree
to graph size ratio (≈CC) for the 127 protein graphs on
average is 0.24 with a standard deviation of 0.10 [11,12].
By k = 10, it is clear that neither the AA or CA graphs
could be termed small-world. The APLs rise and the CCs
plummet (near zero for CA and 0.05–0.25 for AA). In
summary, to pick a construction that most clearly satisfies
the small-world conditions, one must use the nonfiltered
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Fig. 4 Graph size versus clustering coefficient divided by
average degree of each protein in the dataset at 8 Å with no filter
k = 1 on a logged scale (both axes). Results from the CA method
are blue squares, while results from the AA method are red circles.
[Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

graph from an AA representation at a reasonable distance.
We note that our CCs (shown in Fig. 5) are higher than
those in Ref [2], but their graphs were constructed with a
distance cutoff of 5 Å, compared to ours at 8 Å.

It is clear from Fig. 5 that the application of filters
destroys the small-world property because the CC plum-
mets. This is intuitive because the natural ordering of amino
acids and methods of graph construction result in sequence
neighbors being graph neighbors, and the CC should drop
when those trivial contacts are removed. However, we also
note that the CA construction seems to be much more sen-
sitive to the filter than the AA representation. One can
also note that for the CA representation and k = 10 fil-
ter, a group of proteins has zero as the value of the CC,
so that effectively all connected vertex triples have been
dismantled.

6. RESULTS ON CONSTRUCTING A RANDOM
PROTEIN GRAPH GENERATOR

In this section, we investigate whether or not small-
world graph generators can generate graphs that mimic
protein graphs. The main feature we try to mimic is the
newly proposed contact distribution of the protein graphs.
Developing a model to create protein graphs may shed
light on protein folding depending on what properties must
be enforced in order to achieve realistic protein graphs.
Additionally, the graph generator mechanism may be useful
for modeling other real-world networks. However, existing

Fig. 5 Scatterplot of average clustering coefficient versus average path length for the AA (black) and CA (red) representations at three
different filter levels at 8 Å. Circles are k = 1 filter (i.e., nonfiltered graph), triangles are k = 4, and plus signs are k = 10. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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mechanisms in small-world graph generation for adding
long-range contacts do not appear to generate realistic
protein graphs; so we discuss a reciprocal attachment
method in conjunction with other changes to graph
generating procedures (including a different probability
distribution to govern long-range contacts) that may help
to generate realistic protein graphs.

6.1. Random Graphs Versus Protein Graphs

Briefly, we explore the differences between randomly
generated small-world graphs and protein graphs with no
filter via their contact distributions as well as APLs and
CCs (as example graph properties). We do not compare
the filtered protein graphs with existing graph generators
and leave this as an area for future work, because we are
interested in the small-world aspects of proteins seen by
other researchers.

6.1.1. Protein contact distributions

Beyond being small-world in nature, another feature that
makes protein graphs interesting is the natural order of the
vertices, and its consequences. Again, contact distribution
is the distribution of sequence separation values for vertices
in contact and may be scaled in one of two ways—either
consider the number of edges at each sequence separation
i as a fraction of the maximum possible at each sequence
separation (n − i), or as a fraction of existing edges (our
preference). Contact distributions for protein graphs have
interesting shapes due to protein folding patterns. An
example contact distribution under the AA construction at
8 Å for PDB 1APS with no filter is shown in Fig. 6. The
graph has 98 vertices and 1658 edges. The rescaling was
chosen as a fraction of existing edges. The effect of a filter k

on a contact distribution is just to set the first k-1 sequence
separation proportions to zero, with rescaling as needed to
keep any desired constraints.

The contact distribution example from 1APS shows
interesting humps. These humps occur due to the formation
of long-range contacts. For example, the first hump in
Fig. 6 occurs around sequence separation 30. This might
be because amino acid 12 was in contact with amino acid
42, which suggests amino acid 11 might be in contact with
amino acids 42 or 43, and that amino acid 12 might be
in contact with amino acid 43, and so on. There might
also be multiple neighborhoods involved. For example, it
might be a contact between amino acids 12 and 42 and
another contact between amino acids 25 and 55 and related
connections that cause the hump.

It is not difficult to compute contact distributions for
graphs generated from random graph generators, taking the
vertex order to be as provided by the generating algorithm.

Fig. 6 Contact distribution of PDB 1APS under AA construction
at 8 Å with no filter (k = 1).

An example contact distribution from a rewired ring model
(igraph function watts.strogatz.game(1, 100, 16, 0.3) [19])
with 100 vertices, 1600 edges, and a rewiring probability of
0.3 is shown in Fig. 7. The number of vertices and edges
were chosen to be similar to the graph of protein PDB
1APS. The rewiring probability was chosen to provide a
degree distribution similar to that of 1APS. Even with these
similar settings, the contact distribution from the random
small-world rewired ring model graph does not look at all
like the contact distribution of the protein graph.

Fig. 7 Contact distribution of a small-world graph generated
from a rewired ring model (100 vertices, 1600 edges, rewire
probability = 0.3).
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Currently, we are investigating automatic ways of
quantifying the differences in the distributions. It is clear,
however, that current random graph generators do not
provide contact distributions that mimic protein graphs,
even though their number of edges, vertices, degrees,
CCs, and APLs may be similar. This leads to some
natural questions. How can we obtain random protein-
like graphs? Can we put protein graphs in a framework
where they are a subset of small-world graphs (but
with ordered vertices)? What do we learn about protein
folding or packing from our adventures in making random
protein graphs?

6.1.2. APL and CC from protein graphs versus
small-world rewired ring model graphs

To look at differences between the protein graphs
and small-world graphs generated via the rewired ring
model [12], we examined the distributions of graph size
and number of edges at 8 Å for our set of protein graphs
under the AA construction with no filter in order to
generate similar sized graphs with the rewired ring model
generating algorithm using igraph [19]. The graph size for
our protein graphs seems to be fairly well-modeled by a
gamma distribution with shape 2.7944 and rate 0.0238. We
sampled size values from that distribution to set sizes for the
random graphs. We did implement a constraint that sizes
could not be smaller than 20, and redrew values if this
occurred. Twenty amino acids is the minimum size for a
protein in our dataset. After the sizes were set, we drew a
value for the ratio of edges to graph size from two different
uniform distributions [one for graphs with more than 199
vertices, a Uniform on (11, 14), and one for those graphs
with fewer than 200 vertices, a Uniform on (9, 12)], chosen
based on the distributions of these ratios for our protein
graphs, at a distance of 8 Å. We sampled the ratio after
the size selection to appropriately model the differences
in the distribution of number of edges based on size. We
model the ratio, instead of the number of edges, because
that makes it a more natural input to the rewired ring model
in igraph, where we need to select a value of the number of
neighbors to be connected at the initial ring construction.
The initial connections then have a probability of being
rewired, and we simplified (removed multi-edges from) any
graphs that ended up with multi-edges after rewiring. After
some trial and error on a small grid of shape values for a
beta distribution to model the rewire probability, to see if
we could get the APL and CC values to be near protein
graph values, we decided to model the rewire probability
as a beta distribution (3, 10). We then generated 10 000
rewired ring small-world models according to these various
inputs, and compared the results in terms of sizes (number
of vertices), number of edges, APLs, and CCs to our AA

Table 4. Average (with standard deviations in parentheses)
graph sizes, number of edges, average path lengths, and clustering
coefficients of 10 000 randomly generated rewired ring small-
world models (parameters specified in text) compared to 127
protein graphs from the AA representation with no filter at 8 Å.

Measure
Rewired ring
model graphs

Protein
graphs

Graph Size 118.02 (69.68) 117.46 (90.42)
Number of edges

(overall)
1300.70 (881.40) 1324.34 (1144.55)

Number of edges
(size > 199)

3200.87 (705.44) 4247.67 (1327.19)

Number of edges
(size < 200)

1035.19 (490.78) 1019.30 (533.39)

APL (overall) 1.81 (0.25) 2.20 (0.58)
APL (size >199) 2.09 (0.14) 3.45 (0.97)
APL (size < 200) 1.77 (0.24) 2.07 (0.32)

CC (overall) 0.36 (0.17) 0.63 (0.04)
CC (size > 199) 0.25 (0.12) 0.56 (0.01)
CC (size < 200) 0.37 (0.17) 0.64 (0.04)

protein graphs at 8 Å with no filter. The results are shown
in Table 4.

Table 4 shows that the randomly generated graphs are
most similar in size and number of edges to the protein
graphs for smaller graph sizes (fewer than 200 vertices),
though the overall size and edge values are not far off
due to the low number of larger graphs for the graph sizes
and number of edges. However, the similarities stop there.
Even though we searched for a good rewiring probability,
the APLs of the randomly generated graphs are too short
compared to the protein graphs. The CCs have a similar
problem. The CCs from the randomly generated graphs
are very low compared to the protein graphs. Thus, it
appears that while we can mimic the properties of size and
number of edges, the rewiring process with a fixed rewire
probability from a starting ring model does not result in a
graph that behaves like a nonfiltered protein graph in terms
of APL or CC. This is not too surprising, but it means a
more appropriate model is needed. In our next section, we
consider what steps and/or properties are needed to generate
small-world graphs that behave like protein graphs.

6.2. Considerations for Constructing Random
Protein-Like Graphs

6.2.1. Using a grid/ring building block

The ring/grid building block of the small-world models
considered as examples is a good starting point. As seen
in the example protein contact distribution, Fig. 6, there
are a number of connections at small sequence separations.
However, the drop-off is pretty extreme, at around sequence
separation 7–10 in most protein graphs we examined. The
grid/ring basis needs to accurately capture the drop-off.
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This has several implications if starting from a rewired
ring or Kleinberg graph model [12,15]. The rewired ring
model needed is the variant where the original grid is kept,
and long-range edges added, with a small starting grid.
Some minor rewiring of the outer edge of the original
grid will be needed to create the drop-off, meaning the
rewire probability will not be constant for all edges.
Similarly, for the Kleinberg model, some of the original
grid edges will need dropped (or rewired depending on
how the graph is developed), and this may be done with
probabilities based on their amino acid chain separation
distance.

6.2.2. Reciprocal attachment

The small-world graph generators we considered both
have mechanisms to add long-range connections to the
graph. However, they do not reciprocally add connections
to other close neighbors, which is needed to generate the
humps visible in the protein contact distributions. This
could be added to the graph construction process after
an initial long-range connection has been made by adding
connections to graph neighbors with high probability, but
dropping off fast enough to accommodate hump sizes or
properties. As an analogy, something along the lines of the
correlation structure associated with an AR(1) process with
high p could be used to govern the addition of edges. For
example, after adding a random long-range connection, treat
that as the midpoint of a new neighborhood connection.
Add connections to vertex neighbors who are one edge
away from the amino acid in the long-range connection with
probability p, where p ≥ 0.95 (0.95 chosen as an example).
Add connections to vertex neighbors that are two edges
away with probability p2, and so on. The distribution used
to govern the reciprocal attachments, if it generates graphs
that look like the protein graphs, may shed some light on
protein packing.

Reciprocal attachment may be a useful concept for social
network models as well. Assume we are modeling an online
social network from a school, and each vertex is a student.
If a friend of yours makes a new friend connection, you
may see that connection, and also wish to connect to
that individual, but your desire for the new connection
is probably related to how close you are to the friend
who made the connection and to the possible new contact.
Reciprocal attachment as described here is different from
preferential attachment [11]. The network is not growing
as it does in many preferential attachment models, instead
we are assuming the vertices are already fixed and we want
to distribute the edges of the graph appropriately, merging
neighborhoods as we add edges.

In the discussion of reciprocal attachment, we did not
restrict the attachments to be between near sequence

neighbors, but rather to current graph vertex neighbors.
The reason is easily illustrated with an example. As you
add long-range connections, reciprocal attachments happen
based on the current graph. For example, suppose you
already added a long-range connection between vertices
5 and 23, and had several reciprocal connections, and a
new long-range connection is determined between vertices
23 and 47. You do not want to be limited in reciprocal
attachments between vertices near in sequence to 23 and 47.
Instead, because vertex 5 was connected to vertex 23, which
is now connected to vertex 47, a reciprocal connection
between 5 and 47 should be considered (currently 2 edges
are needed to get from 5 to 47 based on the current graph,
a connection would form a triangle), just like a connection
between 22 and 47 (also two edges needed to get from 22
to 47 where a connection would form a triangle). In order
to deal appropriately with reciprocal attachments then, we
appear to need an updatable adjacency matrix for the graph
with path length information or just current path lengths in a
matrix (updated after each long-range connection is added),
and we do not want our neighborhoods for reciprocal
attachments to be constrained to be sequence neighbors.
Indeed, the concept of sequence neighbors may be unique
to protein graphs, and we need to consider a broader idea to
merge the graph neighborhoods after choosing a long-range
contact to add.

6.2.3. Long-range connections

Developing a reciprocal attachment model will help
generate random graphs that behave like protein graphs.
However, adjusting the long-range connection distribution
to accommodate hump properties is also a challenge. Unlike
the Kleinberg model [15], where the long-range connection
probability is governed by the inverse square of the grid
distance between two vertices, and unlike the variant
of the rewired ring model [12] where each long-range
connection could be made with equal probability, long-
range connections will need to be governed by sequence
separation (along a chain, not a two or three-dimensional
grid) with intermediate sequence separation distances given
the highest probabilities. Then, once an attachment is made,
and reciprocal attachments completed, constraints should
be made to avoid adding additional edges within those
neighborhoods. For example, if a protein has 100 amino
acids, it is unlikely amino acids 1 and 100 are in contact.
It is more likely that amino acid 1 contacts amino acid 30,
and amino acid 71 contacts amino acid 100. If a long-range
connection is added between, amino acid 25 and amino acid
55, and reciprocal connections are completed, we should not
add another long-range connection between amino acid 26
and amino acid 53, because this was already a considered
reciprocal connection for a long-range connection.
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One way to keep track of long-range connections and
reciprocal connections already considered would be to
use a matrix containing contact probabilities for future
long-distance contacts, a long-distance contact probability
matrix. For example, to begin, we would fill an n by
n matrix with the probability of long-range connections
between vertex i and j , with the probability as the ij th
entry in the matrix. We would have to define long-range,
and place appropriate constraints on the matrix (we may
want row sums to be one, so that we actually have a
probability distribution for each vertex). Then, we randomly
draw a vertex to add a connection to, and use its long-
range connection probability distribution (from that row of
the matrix) to randomly choose a long-range connection
to add. Next, we consider reciprocal attachments related to
that long-range connection, using path lengths and whatever
probability distribution we have settled on, updating the
adjacency matrix and path length information as we go.
Before determining the next long-range connection, we
update the long-distance contact probability matrix, setting
contacts already considered to have future probability 0,
and if necessary, rescaling along the rows (and\or columns)
to keep desired constraints. We note that this matrix is
not a standard contact map (from the protein literature),
which contains probabilities of vertices being in contact in
the folded state of the protein. Instead, our proposal is an
updatable long-range connection probability matrix, and we
use it to determine what long-range connections to add, and
deal with the short-range connections during the reciprocal
steps. Additionally, the stopping point (i.e., how many long-
range contacts to add) still needs to be determined and is not
derived from the matrix (though you may consider drawing
long-range connections until the matrix is full of 0s, as one
stopping point).

6.2.4. Differences by protein class

Another challenge with the long-range connections (and
even, the starting ring or grid and drop off pattern) is that
the pattern in the contact distributions of proteins appears
to differ by protein structural class. Further analysis is still
needed on these possible differences, but if confirmed in
future work, we may use different distributions to govern
long-range connections based on protein structural class.
We still aim for a general model first.

6.2.5. Tying in amino acid information

A major feature related to proteins that is left out of our
graphs is the amino acid type. There are only 20 amino
acids involved, and a 20 by 20 matrix of contact types
can be constructed for any protein. However, incorporating
this information into our graphs is a challenge. Approached

differently, from the realm of contact maps where contact
predictions are desired, using the amino acid information
and contact probabilities based on type and sequence
separation is important. Models to predict contacts have
become quite sophisticated, but success rates still vary and
techniques may work well for some proteins and not others
(especially if they are dependent on template proteins or
protein fragments). For now, we are not concerned with
adding amino acid information, and want to pursue work
on reciprocal attachment models, because they have broader
applications than just to generate graphs that behave like
protein graphs. As mentioned above, reciprocal attachment
may be useful for modeling social networks, where a friend
request may result in a short series of reciprocal requests
from a network of friends.

7. DISCUSSION, CONCLUSIONS, AND FUTURE
WORK

In this article, we have discussed selected results on
protein graph construction mechanisms and challenges
in generating random graphs that behave like protein
graphs. We found that the sparsity of Carbon-alpha graphs
compared to AA single contact graphs leads the Carbon-
alpha graphs to have longer APLs and smaller CCs than
the AA graphs at every distance and filter. The AA single
contact graph with no filter was demonstrated to be small-
world. Indeed, introducing any filter destroyed the small-
world properties of the protein graphs because the CC
dropped while APL was not strongly affected.

Next, we turned to questions about random graphs and
generating protein graphs, and introduced a new graph
concept—the contact distribution, for use when the vertices
of a graph are ordered. After supplying evidence using the
rewired ring small-world model, arguing that it does not
generate protein-like graphs, we outlined properties needed
in a model to succeed in generating protein-like graphs.
This included a different long-range contact distribution
(yet to be identified) and development of a reciprocal
attachment model to merge the neighborhoods brought
together by the long-range contact. Research work to
compare filtered protein graphs to existing graph generators
is also a next step. This will shed light on contacts made
by the amino acids in the protein not related to the amino
acid backbone.

As suggested in the various sections, particularly in
Section 6, much related work remains. In particular, we
plan to look at graph properties as measures of protein
stability and study relationships to folding/unfolding, such
as ERIP [10], but extended to other measures like centrality.
Further examinations of centrality measures with different
filters applied would also be interesting due to their
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potential to identify important amino acid contacts for
folding. Clearly, there is significant work in developing
an appropriate graph generator for protein graphs, and we
have active work in this area, pursing reciprocal attachment
models in a protein setting with extensions to social
network settings (though the vertices are not ordered in that
application). We hope this work will shed light on protein
folding and amino acid packing properties. We may also
investigate whether or not the different protein folds may
be characterized by their graph properties. The different
graph constructions generate different numbers of edges,
and we have work examining relationships between the
numbers of edges to examine packing properties as well.
Finally, there is significant work ahead in obtaining a larger,
representative sample of proteins and their graphs from the
PDB, to use for all these analyses and graph generator
development, even if kinetic or thermodynamic information
is not available for those proteins.
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